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James Chengchou Han, Ph.D.
University of Nebraska, 2016

Advisor: Haishun Yang

Irrigation decision making is critical for crop producers in the Midwestern
United States because of the high demand for water during the peak of growing
season of corn and soybean fields. Agronomists try to use agricultural-related data
to optimize irrigation decision making. The biggest obstacle is the gap of
transforming data to usable information which producers can access and take
corresponding actions regarding when to irrigate their fields.

We developed CornSoyWater (http://cornsoywater.unl.edu), a web-based
app that can be used in a web browser of any desktop computers or mobile devices.
The goal is to use state-of-the-art quantitative agronomic sciences and information
technologies, and in-season real-time weather data with field-specific crop
management information to predict crop development and growth, crop water use and
soil water balance to aid producers’ irrigation decision making.

For practical use of the app, the corn crop model (Hybrid-Maize model)
which runs inside of the app needed to be tested for its accuracy. We used a 5-year
field dataset to test the performance of Hybrid-Maize model on estimating soil water

balance near Mead, NE. We conducted a 2-year field experiment to test the



performance of Hybrid-Maize model on maize growth and crop water use under a
range of irrigation treatments including 100% (recharge top 30 cm soil to field
capacity), 75% and 50% of the 100%, and 0% (rainfed) in Lincoln, Nebraska. The
results showed that the Hybrid-Maize model simulated soil water balance well for the
entire root zone, but underestimated the soil water balance at 0-30 cm and 60 c¢cm to
maximum rooting depth, respectively. For the fields at Mead, Hybrid-Maize model
can reduce irrigation pumping by 93 mm during the season compared to actual
irrigation scheduling by delaying the first irrigation and reducing the overall number
of irrigation events. The Hybrid-Maize model performed well in a relatively wet year
for biomass and grain yield simulation.

The test results indicated that producers can utilize this app for irrigation
decision making. A business plan was proposed on how a startup can commercialize

this type of agricultural-related apps or technologies to benefit producers.
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Chapter 1
Behind the Development of the Irrigation App CornSoyWater -- What, Why, and

How

Introduction

CornSoyWater (http://cornsoywater.unl.edu) was an application

development project funded by the Water, Energy and Agriculture Initiative to
develop an online irrigation aid for corn and soybean producers. It is a web-based
application that can be used in a web browser of any desktop computer or mobile
device. The goal was to use state-of-the-art quantitative agronomic sciences and
information technologies, and in-season real-time weather data with field-specific
crop management information to predict crop development and growth, crop water

use and soil water balance to aid producers’ irrigation decision making.

Background
The innovation of cener pivot, modern agricultural mechanization, and
genetically modified crops have revolutionized the entire North American agricultural
production in the last decades. Those innovations have doubled or tripled the crop
yields and become the driving force for agroeconomics. However, with the need of
raising the yield to the next level to feed the world and improve profitability, the
current solution of increasing inputs (e.g. water, nitrogen, and control of abiotic

stresses) to the system, or increasing production area does not always favor producers.



The good news is that by leveraging the power of quantitative simulation modeling
and data science, the problem may have a better solution. The world is generating data
in an unbelievable volume each day. To put it into perspective, the amount of data
generated in one day is equivalent to that of 90 years of high-definition videos (Mikal
Khoso, 2016). Even with only a fraction of the data related to food and agriculture, it
is sufficient to make impacts on the industry by using the data in innovative ways. We
have seen data-driven technologies change the way of how businesses operate.
Millions of apps provide us various services at the speed of a single click on the
screen. With the anticipation of technological revolution, agriculture is eager to ride

the wave.

Problems

Although the agricultural-related data are available, the biggest obstacle is
the gap of transforming data into usable information which producers can access and
take corresponding actions. Years of science and basic research from academic
institutions with billions of dollars of investment have tried to help producers improve
their productivities and efficiencies. Successes have been made in breaking through
some persistent obstacles such as helping producers adopt new farming practices to
maintain a sustainable ecosystem while gaining high yields. However, many new
practices and technological advancements promoted by academic institutions can take
a remarkably long time for producers to adopt, simply because agriculture is not only

a market-driven business but also a “culture”. Shooting for higher profits in the short



term using familiar methods is always more desirable than trying something different
with delayed benefits. Many times, the latest or most promising innovations from
research might help farmers in the long run, but they may not show immediate
tangible benefits in the short run because of limited research capital. Also, the science
or research entities may not make adequate efforts in marketing and public relations,
leading to the failure of their innovations to reach producers in a timely manner. Even
if a product or service has reached producers, its maintenance can become a
significant burden for keeping its function, not mentioning for its improvement,
without revenue streams from the market or a further funding support. Countless
examples of such products developed by university research have failed or
disappeared after a couple of years or only has reached a fraction of its end users

regardless of the quality of the product.

Solutions
One of the effective solutions is to bridge the gap between scientific

products for agriculture and producers by startup entrepreneurs. A startup, a new
business venture, can create disruptive innovation which combines technology and
science with viable business models which can generate equity and deliver market
values with minimum capital. A model of having startup partners with university
research R&D sectors can be used to fill the gap and it will make innovation no longer
far to reach. With university research experts developing the concept or prototype of a

product while the startup refines the prototype of the product to a market ready level



and tests it on the market, producers will be able to get their hands on the product
faster. The benefit of this collaboration model is that it can accelerate the development
iterations of a product. Usually, a product may experience an early failure by the
testing of the market, which a research team from the university may not be able to
solve by themselves. With the effort of the startup to pinpoint the defect of the current
product or the real need for the product based on market feedbacks, the university side
can pivot their research direction to things that matter to the majority of producers and
keep improving the next generation of the product. Meanwhile, university research
can get funding support from the collaboration startup to keep improving the science
and technology of the product. This fast pace of the production-testing circle by
collective efforts among university, startup, and producers can benefit all three sides.
So, how does a university research team bring its research product to a
potentially commercial level in the first place? The answer is straightforward — to
create a product which is close enough to a commercial level by combining science
and information technology together. This is the focus of this dissertation. In the
agricultural science research, scientists have reached a level that they can use the
environmental conditions to predict how a crop is growing and developing or
so-called crop modeling. This long known technology can benefit many consumers
such as producers, crop consultants, insurance agents, etc., whoever needs to know
what the crop yield is going to be at the end of a season. However, due to the
complexity of operating a model, not everyone can easily make the model work even

with proper training. After years of work, scientists have improved their models by



furnishing them with friendly and intuitive user interfaces so that the consumers can
use the models easily. Still, the accessibility and visibility of many programs are far
from reach for a majority of consumers. In this dissertation, we discuss how we built a
web-based irrigation app that can help producers on irrigation decision making. This
app is a product which combined crop models, meteorological and environmental data
using the latest web technologies. This is one step further to transform a research only
product to a consumer friendly product.

However, the remaining question is how to answer the natural question from
the users proactively when they receive such a program: “Can this program really
predict yield/ water /nitrogen/ pesticide correctly?” The simple answer is that a model
needs to be validated. A program may perform well for one region but may fail in
another region because of the climate variation and/or management differences. Most
times scientists cannot give a straight answer and also may not know whether or not
the program will work for a given case. That is why validation and calibration of a
model are two necessary steps to identify how well a model can be used to predict a
particular case. In this dissertation, we focussed on validation of the model. By
validating the model, we can conclude in what conditions the model can perform well,

and vice versa.

Significance
Imagine how powerful it would be if a producer can make irrigation

decision from his/her fingertips. The routine for irrigation management is time and



labor consuming. During the cropping season, a producer gets up every day and needs
to check the weather forecast on TV or the internet. Although producers can control a
center pivot from a smartphone, he/she often needs to drive to the field to make crop
and soil observations before deciding whether to irrigate. After walking into the field
for scouting, he/she needs to check plants to determine whether the plant is currently
or will soon be under water stress. In addition, he/she needs to check the soil to see if
it is dry or wet. Very often, the spot he/she checked does not represent the whole field
due to the spatial variation of the soil or crop, which can lead to misjudgment and
irrigating either too early or too late. All the issues can be addressed effectively by
using an app to support the irrigation decision making. The producer can make a

decision in a second by the app recommendation without stepping out of the house.

Objectives
The objective of this study is to develop a user-friendly and reliable
irrigation app using crop modeling science and information technology; we strive to
make the prototype, an easy-to-use irrigation decision support tool. We also test and
validate irrigation recommendations from the app against field observations. We hope
the app can aspire and eventually reach its market potential by the AgTech segment,
and contribute to irrigated agricultural production. The main focus of this dissertation
is the development and testing of the app. In Chapter 2, I discussed how we brought a
crop model into a web-based prototype app for corn irrigation guidance and the app

performance on soil water balance prediction. In Chapter 3, I further tested the



model’s capabilities on estimating crop growth and development, which are the major
intermediate components of the model outputs. The accuracy of those outputs are
critical and also directly related to the soil water balance estimation and final
irrigation recommendation. In Chapter 4, I upgraded the app by adding another crop
model for simulating soil water balance in soybean fields to the app. The integrated
app is called CornSoyWater (http://cornsoywater.unl.edu). I documented the
development process of CornSoyWater along with the technical details. In Chapter 5,
we summarized the findings from Chapters 2 to 4 and addressed how are we going to
tackle remaining issues, which is centered around how a startup can utilize this
technology by making it a viable business and benefit the consumers after the

prototype is produced.
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Chapter 2
Field Validation of Soil Water Balance in CornWater, An Irrigation Decision Support

for Corn Fields

Abstract

Irrigation decision making is critical for farmers in U.S. Mid-West because
of the high demand for water during the peak of the growing season for corn and
soybean fields. We developed CornWater (http://cornwater.unl.edu), a web-based app
to help farmers improve their irrigation scheduling for corn fields. CornWater uses
real-time weather data with a 10-d forecast and web-based simulation to predict
current and future 10-d crop stage, root-zone soil water balance, and possibility of
crop water stress. The trigger for irrigation is the emergence of crop water stress,
which in turn is quantified by the larger of the water depletion stress (WDS) and
evapotranspiration water stress (ETS). We used 5-yr field data to test the performance
of CornWater. Results showed CornWater simulated well the overall root zone soil
water balance (RMSE = 25 mm, EF = 0.46), but underestimated the soil water amount
at 0-30 cm and 60 cm to rooting depth, respectively. Simulated ET matched measured
ET better in irrigated fields than the rainfed field. Using CornWater can save irrigation
water by 93 mm during the season compared with actual irrigation scheduling by
delaying the first irrigation and reducing the overall number of irrigation events.
CornWater can help farmers irrigate their fields at the most needed time with less field

scouting.



Abbreviations: ET, evapotranspiration; WDS, water depletion stress; ETS, ET stress;

LALI, leaf area index; GDD, growing degree days

Introduction

Irrigation management is one of the important farming practices in western
US Corn Belt as it directly affects yield (Payero et al., 2009). Missing irrigation at
critical crop growth stages can cause crops to suffer water stress and yield loss. Most
farmers use traditional “look™ and “feel” approaches to make irrigation scheduling
decision during growing season (USDA-NASS, 2012). Typically, they scout their
fields, check crop stage, look for signs of crop water stress, assess soil water condition,
and determine if irrigate or not (USDA-NASS, 2012). The traditional irrigation
scheduling methods are time consuming as they require frequent field scouting.
Moreover, traditional hand-feel based assessment of soil water condition is empirical,
less quantitative, and can be biased if a field has significant spatial variability in
topography or soil properties. Meanwhile, more and more farmers have adopted new
technologies for assisting irrigation decision making (USDA-NASS, 2012). For
example, 10% of farmers used soil water sensors to monitor soil water status in the
fields and 8% farmers used daily crop ET reports for irrigation guideline. Using
sensors to monitor soil water leads to objective and quantitative assessment of soil
water condition, but the results may only represent the specific spots of the field

where the sensors are installed and not the entire field. In addition, malfunction of
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sensors can cause farmers to make wrong irrigation decisions. Daily crop ET report
normally covers a large area and the values are too general, while the crop in a
specific field can be significantly different from the norm in terms of crop stage, plant
population, and tillage management. Even with ET reports from various weather
services from public or private institutions, farmers still need to process and convert
the raw data to intuitive information for crop management decision making. At
present, this step still lags behind or totally missing. For example, farmers need to
manually track cumulative rainfall from daily weather report for individual fields
when the crop is sowed at different dates, and they also need to keep separate water
balance sheets for different fields because of differences in soil properties and crop
management (Kranz et al, 2008). Although farmers make right decisions in most cases,
sometimes they make mistakes because of unexpected weather conditions or simply
errors in their manual calculations on water balance.

The improvement of internet coverage and speed in the rural areas has made
it possible for information technology products such as irrigation scheduling apps to
tap into conventional farming practices (Vellidis et al., 2016; Gonzalez Perea et al.,
2016; USDA 2015). For instance, using mobile applications, farmers can remotely
control center pivots from their homes. The improvement of the weather forecast in
recently years and easier data accessibility have also made it possible to incorporate
short-term future weather conditions into irrigation decision making (Migliaccio et al.,
2016; Fraisse et al., 2006). Migliaccio et al. (2016) developed the Smartlrrigation

apps for providing real-time irrigation schedules for crops including avocado, citrus,
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cotton, peanut, strawberry, and vegetables for southeastern USA. The apps run
simulation models on the server using weather data from online sources and crop and
soil data from users to provide decision support for crop management. Andales et al.
(2014) developed an online irrigation management system which estimates soil water
dynamic of various crops in Colorado. Another integrated research and extension
project Useful to Usable (U2U) has grabbed farmer attention by providing various
weather graphic summaries supported by climatologists’ study (Dai et al., 2016).
Meanwhile, private sectors have utilized weather data and remote sensing technology
to produce a series of integrated online farming management platforms, such as
Farmlogs online product and FieldView from the Climate Corporation (Carbonell,
2016). Such apps and platforms can significantly facilitate farmers to improve their
farming efficacy and can potentially reduce farming costs.

The objectives of this study were to 1) introduce CornWater, an irrigation
app which simulates soil water balance for a corn field and predicts crop water stress
for coming days, 2) test CornWater app for its performance against measured field
data, and 3) compare the irrigation amount recommended by the app with the actual

irrigation records.

Materials and Methods
What CornWater does
The CornWater app (http://cornwater.unl.edu) uses user specified,

field-specific crop and soil data, and real-time weather data with al0-d forecast as
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input and a tailored corn-specific simulation model as a processor. It predicts crop
growth, soil water consumption, and root-zone soil water balance. It estimates the
possibility and magnitude of crop water stress to recommend the date for the next
irrigation for stress-free crop growth. CornWater also takes into account the time
required to complete irrigation for a common field when making a recommendation
for irrigation. The availability of real-time weather data determines where the app can
be used. The weather data of the app is from the weather stations of Automated
Weather Data Network (AWDN) operated by the High Plains Regional Climate
Center (HPRCC:; http://www.hprcc.unl.edu). The AWDN collects weather data on a
daily basis and stores the data in a server after quality control. The AWDN has 225
active weather stations which cover most farming areas of Nebraska, and part of
Colorado, lowa, Kansas, Minnesota, Missouri, Montana, North Dakota, and Wyoming.
In addition, we also have access to Michigan Automated Weather Network (MAWN)
which covers the Michigan state. Currently, CornWate can be used by the western part

of the U.S. Corn Belt.

How CornWater works
CornWater is very simple, intuitive, and straightforward to use, even for a
first-time user. First, go to the CornWater homepage at http://cornwater.unl.edu in a
web browser. A new user can click “Try” button without the need for account
registration. The user will be asked to specify a field on the Google Map in the app

and provide crop and soil information of the field as indicated in Fig 1. Graphic
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results will be shown immediately on this “demo” field (Fig. 1). The user can also
register an account for free. After registration for an account and logging into it by the
username and password, the user will need to locate each of his/her fields on the
Google Map by clicking at the center of a field. In the background, CornWater will
use the coordinates of the location to determine the closest weather station in the
network and retrieve the weather data as the input of the model. If the nearest weather
station is beyond a threshold distance, which is currently set at 32 km, CornWater will
pop up a warning message and disqualify the field because the simulation results may
not be accurate due to that rainfall is highly variable. After that the user also needs to
provide crop information, including 1) hybrid relative maturity (days), 2) date of
planting, 3) plant population (*1000/ha), 4) maximum soil rooting depth, 5) soil
surface residue coverage (%), 6) representative topsoil texture and bulk density, and
subsoil texture, and 7) soil water balance of top 30 cm and below 30 cm at planting. If
irrigation has been applied, the user also must provide irrigation dates and amount in
an irrigation record table in order to receive up-to-date simulation results.

After clicking the “Proceed” button, CornWater produces a result page
which shows in a graph with the date on the X-axis. The graph includes crop stage,
past rainfall events and irrigation record, and the dynamics of the amount of soil
available water in the root zone along with the threshold line for irrigation. The
prediction is up to date with a forecast of the next 10 d. A notification message shows
at the top of the web page in either green or red color: recommendation for irrigation

in red if crop water stress is predicted for the next 10 d, or no-irrigation
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recommendation in green if no water stress is predicted in the next 10 d (Fig. 1). The
recommendation for irrigation also suggests considering possibilities of rainfall in the
near future. Below the graph, a summary table shows the user specified crop and soil

data, up-to-date total water input (rain and irrigation) and crop water use.

Model mechanism

The core of CornWater is Hybrid-Maize (http://hybridmaize.unl.edu/; Yang
et al, 2004, 2006), a simulation model for corn. Briefly, Hybrid-Maize model
combines corn-specific crop development functions of CERES-Maize model (Jones et
al., 1986), and generic mechanistic models of plant physiology such as WOFOST
(Diepen et al., 1989) and INTERCOM (Kropft and Spitters, 1992; Kropff et al., 1992;
Yang et al., 2004). Hybrid-Maize model has been tested and validated primarily in
rainfed and irrigated corn system of Nebraska and Iowa (Yang et al., 2004, Grassini et
al., 2009).

The critical role of crop simulation in CornWater is to predict 1) crop stage,
2) root depth and length density distribution in the soil profile, 3) potential
requirement for crop water uptake as determined by weather, 4) actual crop water
uptake as determined by root distribution and soil water condition, and 5) crop water
stress. Below is a brief description of Hybrid-Maize functions related to the functions
summarized above. Detailed and complete description of the model formulation is in

Yang et al. (2013).
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1) Root depth and soil water uptake
Root growth starts from germination and stops shortly after silking. Root

depth (RD) increases until root growth stops and is simulated as:

RD = GDD10 * RGR

RDpotential
1.15 *GDDsilking

RGR =

where GDD10 is GDD from sowing using a base temperature of 10 °C, and RGR is
the root growth rate (cm per GDD10). And RDpotential is the depth corn root
potentially can reach (default = 1.5 m), but the increase of root depth will stop at the
maximum rooting depth (RDmax) set by users for a specific field and RDpax is smaller
or equal to RDpotential.

The rooting depth is divided into layers of 10 cm depth. Water uptake at
each layer is determined by the root density and soil water pressure. At early stage of
growth when the plant is small and rooting depth is shallow (less than 30 cm), root

density distribution was assumed to be a V shape and estimated as:

RD
WUweightapsolute

WUWGightabsolute = CXp(

WUweightielative = i
ghtrelative EWUweightapsolute

where Depthiayer is the depth of the layer to its bottom. RD is the current rooting depth.

VDC is the vertical distribution coefficient that determines the shape of the
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exponential function, WUweightapsolute and WUweightelative are the absolute and
relative layer weight for water uptake, respectively. The greater the VDC value is, the
greater the WUweight is for upper layers. As the upper part of roots will cross into
neighboring rooting zone when the root system grows deeper, it leads to an effective

rectangle shape root zone while the deepest 30 cm root still keeps the V shape.

2) Crop ET
Three terms related to ET are used bellows. They are reference ET (ET)),

potential ET (ETpot), and actual ET (ETac). ETo refers to grass-referenced FAO
Penman-Monteith evapotranspiration provided in the weather data (Allen et al., 1998),
ETpo refers to ET at current canopy size with adequate water supply in soil, ETac is
co-determined by ETo and current soil water condition.
CornWater calculates ETac: by separate procedures of soil evaporation and crop
transpiration. First, ETy is adjusted for corn if its canopy is largely closed (i.e., around
LAI of 4 or greater) because corn with a closed canopy has an ET about 1.2 times of
the reference grass (Allen et al., 1998). To make the adjustment smooth from 1 to 1.2,
the adjustment starts from LAI 3.5 and ends at LAI 4.5 as:

If LAI <3.5 than adjETo = ETo

else adjETo=ETo * 1.2 * (LAI-3.5)/ (4.5-3.5)

adjETo<=1.2 * ETo
Where adjETy is the adjusted ETo. Second, the potential transpiration at current LAI

(Transppoy) is estimated from adjET) as:
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Transppo—=adjETO*[1-exp(-LAT*k)]

where k is the canopy light extinction coefficient. Transppo indicates the maximum
transpiration under the condition.
Third, the potential evaporation (Evappo) is estimated by considering the

effect of soil coverage by crop residues (Rosenberg et al., 1983):

Evappot = (adjETo — Transppor) * exp(-soilCoverFrac)

in which soilCoverFrac is the fraction of soil surface covered by crop residues. Then,
the actual evaporation was estimated using the two-stage approach in FAO report 56
(Allen et al., 1998) with evaporation soil depth set to top 10 cm soil. The maximum
evaporable amount of soil water is the amount of field capacity to 50% of the value of
permanent wilting point. Actual evaporation rate (Evapac) is at Evappoc when soil
content is greater than a level equivalent to 70% of total evaporable soil water. When

the top 10 cm of soil becomes drier, Evapac is estimated as:

Evappot * (Theta — 0.5*PWPtheta)
step2threshold * (FCtheta — 0.5*PWPtheta)

EVapact =

where Theta, FCtheta, and PWPtheta are the topsoil volumetric water content in

fraction, field capacity, and permanent wilting point, respectively, and step2threshold
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is the fraction in total evaporable soil water below which evaporation changes from
stage 1 to stage 2, and is set at 0.7.

After that, the maximum crop water uptake (Uptakemax) is estimated from
soil water status and root distribution at each soil layer. For each layer with presence

of roots, Uptakemax is estimated as:

(PSLiear — PSD
(Rplant + Rroot)* WUweightelative

Uptakemax =

where PSI is soil water potential of the layer, PSliear is the leaf water suction (=17000
cm). Ryjan (d!) is the resistance of the plant to water flow (=9690 d™!).

WUweightrelaive is the relative weight of that soil layer for water uptake and is
calculated from root length density of that layer relative to the total root length density.
Then, total maximum water uptake is calculated from the sum of Uptakemax of each
layer. Finally, actual transpiration (Transpact) is obtained from the smaller one between

Transppot and Uptakemax.

3) Soil water balance
CornWater calculates daily water balance as:

W = Wy.1— Evapact — Transpact + P + [ - RO

where W is the soil water amount at the end of a day, Wq.1 is the soil water balance of

the previous day, Evap, is the actual soil evaporation, Transpact is the actual soil
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transpiration, P is the precipitation for that day, and I is irrigation amount of that day.
Runoff (RO) is also estimated using the simplified curve number method as in Soltani

and Sinclair (2012).

4) Crop water stress

CornWater estimates two water stresses indices: water depletion stress
(WDS) and ET stress (ETS). Soil available water threshold (AW ireshold, in fraction)
for triggering irrigation is set at 0.5 of available water depletion when the crop starts

to sense water stress (Grant et al., 1989). WDS is calculated as:

AW

wWDS=1— ——
AVvthreshold

where AW (in fraction) is total available water in soil rooting zone. WDS ranges from
0 to 1, with 0 for no stress and 1 for complete stress and stop of photosynthesis for
that day. A future version of the app will allow users to modify AW whreshold. In addition,
CornWater also estimates ETS, because under certain circumstances crop can still
suffer from water stress even when soil is relative wet, but water supply from soil

cannot meet water demand from the weather condition. ETS is estimated as:

Trans
ETS =1— —oPact
Transpye¢

where ETS is ET stress, Transpac is actual transpiration, and Transppo is potential
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transpiration. CornWater uses the greater value between WDS and ETS as the final

water stress for that day.

5) Irrigation recommendation

Irrigation recommendation was on the basis of avoiding the occurrence of
water stress. Whenever water stress is about to occur, the model will trigger a
recommendation of irrigation. If the user takes the recommendation and irrigates, the
actual date and irrigation amount must be specified in the irrigation log of the app so

that the app will update soil water balance.

Field experimental data

We used a 5-yr field dataset (2001 to 2005) collected from University of
Nebraska Agricultural Research and Development Center at Mead, NE to test the
performance of CornWater. The dataset were collected from three production-scale
(from 49 to 65 ha) fields. Site 1 (i.e., the first field, 41°09°54.2” N, 96°28°35.9”W)
was irrigated continuous corn. Site 2 (i.e., the second field, 41°09°53.5” N,
96°28°12.3” W) was next to Site 1 and was irrigated corn-soybean annual rotation.
Both Sites 1 and 2 were equipped with center pivot irrigation systems. Site 3 (i.e., the
third field, 41°10°46.8” N, 96°26°22.7” W) was rainfed corn-soybean annual rotation.
In total, there were 11 site-year combinations, including five yr of Site 1, and three yrs
for Sites 2 and 3, respectively as Sites 2 and 3 were planted soybean in 2002 and 2004.

Before 2001, both Sites 1 and 2 had a 10-yr of corn-soybean rotation under on-till,
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while Site 3 had various crops with conventional tillage (Hunt et al., 2014). All three
sites were uniformly tilled by disking before the initiation of the study (Verma et al.,
2005), and had been under no-till since initiation in 2001, except Site 1 was disked
again in 2005 (Suyker and Verma, 2009). The predominant soil texture of the three
sites was silty clay loam (Verma et al., 2005), with volumetric water content at field
capacity of the top 1 m depth at 0.41 for Sites 1 and 2, and 0.39 for Site 3 (Suyker and
Verma, 2012). Table 1 summarizes crop and management information on the study
sites. The weather data for the three sites were obtained from an automated weather
station that was very close to Sites 1 and site 2, and 2.4 km from Site 3. Augustine
(2010) suggested the rain gauge should be installed within 2 km of a field to represent
the accurately on-site precipitation in Colorado area. So we assume the precipitation

records were representative of the three sites.

Soil water measurement

At three locations within each field, the Dynamax Theta probes (Delta-T
Devices, Cambridge, UK) were installed at 10, 25, 50, and 100 cm soil depths in the
spring of 2001 for monitoring volumetric water content. The soil water sensors were
installed at a 45° angle from the surface at the 10 and 25 cm depths and were installed
by a drip loop method at 50 and 100 cm (Hunt et al., 2014). Sensors at 10 and 25 cm
were temporarily removed during planting and harvest operations and reinstalled at
the same locations later. Sensor readings were logged on an hourly basis but averaged

daily for final output. Senor data of the same depth at the three locations in each field
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were averaged to represent that depth of the field. The data of 10 and 25 cm, 25 and
50 cm, and 50 and 100 cm were averaged respectively to represent water content at
0-30, 30-60, and below 60 cm to the maximum rooting depth layers in order to match
the output of soil water balance of the CornWater app. Because the deepest sensors
were at 100 cm, we compared the total water amount at the 100 cm soil depth for
irrigated sites and 120 cm soil depth for the rainfed site with our model simulation,

respectively.

ET measurement
Eddy covariance flux method was used to measure ET (Baldocchi et al.,
1988). An open-path infrared CO2/ H20 gas analyzing system (Model LI7500:
Li-Cor Inc., Lincoln, NE) and an omnidirectional 3D sonic anemometer (Model R3:
Gill Instruments Ltd., Lymington, UK) were installed to measure vertical transfer of

water vapor for each site (Suyker and Verma, 2009).

Calibration of input settings to model
Input settings for model simulation should be independent of a model and
representative of the actual situation. In reality, however, some input settings are
either difficult to measure, or measured values do not completely represent the real
situation due to either temporal changes through the simulation period or spatial
variation across the simulated space. In this study, we calibrated the values of several

input settings, including bulk density, rooting depth, and soil water content at
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planting.

We first used measured bulk densities at soil depth of 5, 15, 30, 60, and 90
cm as model inputs setting for simulation. For the first year (i.e., 2001), however, we
increased the topsoil (0-30 cm) bulk density by 5%, because the samples for topsoil
bulk density was collected soon after the initial disk tillage before planting of 2001,
and as a result; the topsoil likely experienced compaction during the 2001 growing
season (Haring et al., 2013). The bulk density below 30 cm was used to calculate
porosity as a model input parameter. Measured soil water data showed water content
did not change significantly at 100 cm depth during growing season for the irrigated
sites across years, while the rainfed site showed water depletion at this depth. As a
result, we set 100 cm as the maximum rooting depth for the irrigated sites and 120 cm
for the rainfed site, respectively. As soil water sensors were temporarily removed
during planting operations and no directly measured soil water data available as input
soil water content at planting time, we used the best value that would match simulated

water balance with measured value after planting date.

Statistical measures
We compared the simulated soil water balance with the measurement
throughout each of the growing seasons. We also compared the irrigation
recommendation from the model and actual management record.
The performance of model was evaluated by root mean squared error

(RMSE), mean absolute error (MAE), mean bias error (MBE), and modeling



24

efficiency (EF):

n
1
RMSE = EZ(Si — M;)?
i=1

MAE = =1 1Si — M|
n
MBE = =1(Si — M)
n
1(Si — M;)?
EF =1-2=1 —-
?:1(Mi _M)Z

Where S; is the simulated value, M; is the measured value, n is the number of data
pairs, M is the average of measured value. RMSE measured the deviation of overall
mean between simulated and measured values with values close to zero indicating
good model performance. RMSE has the same unit as S;and M; thus it is easy to
interpret, however, large errors can be weighted heavily (Willmott, 1982). MAE is the
absolute value of simulated minus measured results which is more objective compared
with RMSE to examine overall model error although RMSE is more widely used.
MBE directly indicates if the model underestimates (negative value) or overestimates
(positive value) the measured values and meanwhile offers uniformity of error
distribution. EF ranges from -co to 1. An EF value close to 1 indicates better model
performance. In crop modeling, EF = 0 is considered as the lower limit of model

quality (Wallach et al., 2006).

Results and Discussion

Soil water balance
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Overall, CornWater simulated reasonably well the daily soil water balance
to the maximum rooting depth for all the growing seasons with the EF of 0.46 (Fig. 2,
Table 2). On average across all 11 site-year combinations, the simulated daily soil
water balance to the maximum rooting depth was 25 mm from the measurements
(based on the RMSE). The linear regression of the simulated daily water balance with
the measured values was y= 19.5 + 0.925x, R = 0.62 (Fig. 2). Although the slope of
the regression showed a slight deviation from 1:1 line, most points are around the 1:1
line. In site 3, CornWater did not simulate as well as Sites 1 and 2. In general, the
measured and simulated values had a tendency to agree with each other when soil
water balance was close to 300 mm.

For seasonal dynamics of daily soil water balance during the growing
seasons, CornWater simulations demonstrated acceptable agreement with the
measured values (Fig. 3). Nevertheless, several site-year combinations showed poor
agreement between simulations and measurements. For Site 1 in 2002, the model
underestimated soil water balance during June and July (DOY 152 - 212) with EF of
-3.28, MAB of -25 mm, and MAE of 36 mm (Table 2). A negative EF value indicates
the model cannot even use the average of observed values to predict every situation
for this site (Garnier et al., 2001). The greatest differences between simulated and
measured daily soil water balance occurred at Site 3 in the late season of both 2001
and 2005, where the model underestimated daily soil water balance by 100 and 50
mm, respectively (Fig. 3). Meanwhile, measured soil water balance showed a

smoother trend compared to the simulated results for the two irrigated sites, and was
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less responsive to irrigation as well (for example, Sites 1 and 2 in 2003 before August
1 on DOY 213.

Figures 4-6 showed daily soil water balance of 0-30, 30-60, and 60 cm to
the maximum rooting depth, respectively. For the 0-30 cm soil depth, simulated
values showed an overall overestimation compared with measured ones by an average
of 50 mm after June (DOY 160) at the two irrigated sites (Fig. 4). At Site 3 in 2001
and 2003, however, the simulated daily soil water balance underestimated measured
values.

For the 30-60 cm soil depth, the model simulated more intense water
withdrawal during the middle of the season than measured results (Fig, 5). Moreover,
the simulated soil water balance showed stronger response to water input from
precipitation and irrigation than measured results. Overall, the model tended to
underestimate soil water balance from the beginning of July (DOY 182) even with
significant rainfall or irrigation events, e.g., Site 1 in 2002 and 2005 showed such a
trend. Site 3 in 2001 and 2005 showed much less water recharge in the simulation
compared with the measured ones after August (DOY 213).

For the soil layer of 60 cm to the maximum rooting depth, the model
simulated significant water withdrawal in most site-year combinations while
measurements showed little water withdrawal from this depth in most cases (Fig. 6).
In many cases, the model underestimated daily soil water balance at the deepest soil
depth. Taking Site 1 in 2002 for instance, the measured soil water was 100 mm higher

than simulated at the end of the season.
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ET
The simulated cumulative ET was consistently greater than measured ET
except in Site 3 in 2001 and 2003, especially during early season (Fig. 7, Table 3).
Simulated ET underestimated measured ET by 107 mm at Site 3 in 2003 at the end of
the season which was the greatest difference among all site-year combinations.
Meanwhile, average daily simulated ET was 0.9 mm lower than measured at the same

site and year.

Irrigation recommendation
The main purpose of CornWater app was to estimate soil water balance and
optimize irrigation timing and probable water saving. CornWater recommended less
irrigation water than the actual management by 93 mm (Table 3). The difference in the
irrigation amount recommended by the model and actual management can be large.
For instance, at Site 1 in 2005, the recommended irrigation amount was 160 mm or 56%
of the 280 mm of the actually applied. Also, the app suggested first irrigation after

July 18 (DOY 182), which was later than the first actual irrigation date.

Discussion
Soil water balance
The model can simulate daily soil water balance reasonably well. However,
the simulation performance for the rainfed site was less satisfactory than irrigated

sites. The model predicted the rainfed sites experienced water stress at the late of the
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season (data not shown) which can change the behavior of crop growth and
development. Moreover, the changes will also affect crop water uptake. The model
may not accurately capture all the interactions between water stress and crop growth
and development. So it created a greater deviation on simulated soil water balance
from the measurement for the rainfed site compared with the irrigated sites.

On the seasonal dynamics of soil water balance, the model performed well.
However, some mismatch between measured and simulated inevitably showed on
daily soil water balance of total or each soil layer. The main reason for the mismatch
is the model assumed soil would reach equilibrium at the end of the day regardless
rainfall amount, intensity and the time. The assumption can be valid for sandy soil,
while less likely for other types of soils with a significant amount of clay. In reality,
the soil may reach equilibrium after a few days after rainfall. Thus, a direct
comparison of day-by-day measured and simulated soil water balance can be tricky.
The measured soil water balance could lag for two days compared with today’s
simulated soil water balance under a silty clay loam condition. Moreover, because the
ET consumption by the crop is considered on a daily basis, it could guarantee even
with a perfect simulation, the measured soil water balance at two days later would not
be the same but less than today’s simulated soil water balance.

Site 3 (rainfed) had a great difference between measured and simulated soil
water balance in 2001 and 2005, respectively. This difference might be caused by
unrepresentative rainfall inputs to the model. Because the weather station is 2.4 km

away from Site 3 and summer rainfall may vary significantly within a short distance.
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Differences in rainfall amount between weather station report and onsite received can
cause significant simulation deviations. In addition, if the actual rainfall occurred
across 24:00 (i.e., midnight) when the weather stations upload data to the server, the
amount of rainfall after the midnight will be recorded as an input for the next day’s
calculation, which can disturb the daily comparison of measured and simulated soil
water balance. For Site 3 in 2001, the rapid increase in measured water balance during
the late season was likely caused by formations of cracks after an extended dry period,
leading to quick infiltration of rainfall to deeper depths.

Meanwhile, the smoother trends of measured soil water balance compared
with simulation can be due to the fact that the measured daily results were the
averages of three sensor measurements of the same depth but at different locations in
each site. Water input from a center pivot forms a line across the field and revolves
gradually with a cycle time of three to four d to cover an entire field, resulting in a
gradual change of soil water balance over the duration of pivot operation.

CornWater simulates the field as a whole and assumes that an irrigation
event happens on one day. To address this complexity, a producer could use
CornWater to simulate the stop position in his field (the last position to receive water
during a center pivot revolution), and could initiate irrigation early enough so that the
revolution is completed and the stop position is irrigated before water stress occurs. In
this way, the producer would be managing for the driest point in the field.

In the model, simulated root depth and root density distribution directly

determines where and the amount of the water uptake. However, the root architecture
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and water uptake depend much on the availability of water and nutrients, as well as
soil structure. In our case, the frequent irrigation and no tillage in previous years may
have resulted in thick lateral roots in the upper layers of soil. It has been reported that
corn growth under no-tillage conditions can produce more roots at top 10 cm soil
layers compared with corn in tilled fields (Krishna 2012). This report may explain the
more aggressive water withdrawal at 0-30 cm depth from the model simulation (Fig.
4). Fig. 4-5 suggest that most of the roots concentrate on the top 60 cm which
presumably is responsible for water update (Peng et al., 2012). Meanwhile, many
studies have shown that corn roots can reach 1.5 m soil depth when growing with no
constraints (Dardanelli et al., 1997; Djaman and Irmak, 2012). When upper soil layers
are dry, however, roots tend to be more active in deep layers (Sharp and Davies, 1985).
Besides, the model parameters for root growth are not specifically for Pioneer hybrid
(Table 1), which may lead to differences in root density in the simulation and reality
(York et al., 2015). Ning et al.(2014) reported that roots of modern corn hybrids are
larger and deeper post-silking than old hybrids. Nevertheless, accurate simulation of
the top 30 cm root density distribution is important because it directly affects soil
water update and the irrigation requirement. Leitner et al. (2014) recommended a 3D
root architecture for a better understanding of root functions.

Simulated soil water balance responded instantaneously to rainfall or
irrigation, especially for the top 30 cm layer (Fig 4), whereas the responses of soil
water sensors were more slow and gradual. The differences in the response were most

drastic in the deepest layer. The reason was that the model used a cascading method
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(the so-called "tipping bucket" method) which satisfies the top soil layer recharge to
field capacity first before allocating water to layers underneath. This method was
simple and straightforward at a daily time scale (Jones et al., 1986). However, when it
came to the soil water simulation at deeper depths, the equilibrium arrives without
delay, which is not very realistic, especially for soils of moderate to heavy textures.
The Richards method (Richards, 1931) may work better (Buttler and Riha, 1992).
Richards method allows water to move to the underneath layers while the upper layer
is still being recharged. This can be shown in Site 3 in 2005. When an irrigation event
occurred before August 1 (DOY 213), the rise of measured soil water of the top 30 cm
was less compared with the simulation, whereas at 30-60 cm depth the measurement
increased more than simulation (Fig. 4-5). In addition, soil cracks or difference
between actual precipitation in the field and recorded weather data may have also

contributed to the increase of measured soil water at 30-60 cm and the below.

ET
The reason for simulated cumulative ET greater than measurements could
be the no-till system with a significant amount of residues left in the field, which
reduced the early season ET in those sites as reported by Suyker and Verma (2009). At
Site 3 in 2001 and 2003, the water stress predicted by the model at the late season
(data not shown) was directly related to the simulated lower actual ET compared with

measured ones.



32

Irrigation recommendation

For Sites 1 and 2, irrigation recommendations of the app would reduce
irrigation pumping by 93 mm per season on average, which was about three rounds of
center pivot operations. This is significant not only for reduced water withdrawals but
also operational costs, assuming $800 to $1000 per round of center pivot operation
(Dumler et al., 2007).

A further question would be whether irrigation pumping reduction may
affect corn yield. To answer this question, we need to compare the measured daily
cumulative ET with the model estimations. Site 3, the rainfed site, was more likely to
experience actual ET lower than the ET demand. For instance, model simulation
suggested that Site 3 in 2003 had 107 mm lower ET than the ET demand due to
drought in soil. On average, the difference between simulated and measured total ET
was 49 mm, which was about 10% of total measured ET. Such a difference is not
considered significant for field studies at such a large scale. However, with a lower
simulated total ET, the yield can be affected since crop yield usually has a linear
response to cumulative ET (Tolk et al., 1998). Still, it is hard to conclude the effect of
the lower simulated total ET on yields. A side-by-side experiment is needed for direct
comparison of grain yield under conventional irrigation schedule and CornWater
irrigation scheduling. Predicting water stress accurately is the key to protecting yield
when it comes to pumping reduction. For the 16 major corn models, the Hybrid-maize
model 2014 version, which runs on the backend of CornWater, was one of a few

models which used water depletion stress and evapotranspiration water stress
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mechanisms together to determine the water stress (Jin et al., 2016). CornWater had
this feature because there could be cases where one of the mechanisms does not
capture crop water stress but another does. By using this double mechanism,
CornWater became more reliable to estimate the water stress.

In summary, the CornWater app can perform satisfactorily at the irrigated
sites, but less so in the rainfed site. The performance of the model was good for daily
soil water balance at the total rooting depth but less satisfactory at 0-30, 30-60, and
below 60 cm depths. Future improvements in the model include input accuracy, model

functions on water flow at certain soil types, and ET simulation.

Conclusion

With the fast improvement of internet coverage and speed worldwide,
model-based apps like CornWater can remotely estimate soil water balance in the field
and predict water stress using real-time weather data and increasingly reliable weather
forecasts.

This study showed that with user specified crop management data and major
soil properties, the CornWater app can estimate overall daily soil water balance of the
entire rooting depth and predict future crop water stress reasonably well for the
purpose of irrigation scheduling. However, the model still showed relatively
significant differences in water balance for individual soil depths. The overestimation
of ET can be one of the reasons for poor simulation of the 0-30 cm soil water. Another

reason could be the cascading method in the model for simulating soil water balance,
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which could be improved by using the Richards method, especially if hourly water
input data becomes available. When rainfall data come from an instrument not
installed on-site, representation of rainfall to the field can be a potential issue for
simulation accuracy. On-site rain gauges, or spatially interpolated rainfall data may
lead to better simulation results. We are deploying an upgraded product, which
combines CornWater with SoyWater (http://soywater.unl.edu), a soybean irrigation
app developed by University of Nebraska - Lincoln Soybean team. The new app is
called CornSoyWater (http://cornsoywater.unl.edu). CornSoyWater app is available

for downloading from Apple Store or Google Play.
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Table 1. Corn crop information of three experimental sites near Mead, NE.
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Year& Maturity,  Planting  Population, Simulated Observed

Site Hybrid GDD date 1000/ha date of R6 date of R6
2001&1 Pioneer 33P67 1511 10-May 82 9-Sep 19-Sep
2001&2 Pioneer 33P67 1511 11-May 81 9-Sep 18-Sep
2001&3 Pioneer 33B51 1472 14-May 53 8-Sep 12-Sep
2002&1 Pioneer 33P67 1511 09-May 81 5-Sep 17-Sep
2003&1 Pioneer 33B51 1472 15-May 77 17-Sep 23-Sep
2003&2 Pioneer 33B51 1472 14-May 78 17-Sep 17-Sep
2003&3 Pioneer 33B51 1472 13-May 58 5-Sep 05-Sep
2004&1 Pioneer 33B51 1472 04-May 80 20-Sep 30-Sep
2005&1 Pioneer 33B51 1472 04-May 69 31-Aug 22-Sep
2005&2 Pioneer 33B51 1472 03-May 76 31-Aug 16-Sep
2005&3 Pioneer 33B51 1472 27-Apr 54 31-Aug 20-Sep




Table 2. Statistical summary of CornWater performance on simulation of daily soil

water balance to the maximum rooting depth (100 cm for the irrigated sites and 120

43

cm for the rainfed site) during the growing seasons. N is the sample size, RMSE is the

root mean square, MAE is the mean absolute error, MBE is the mean bias error, and

EF is the modeling efficiency. Year 2001 had fewer data points because the soil

moisture sensors were installed later than other years.

Year&Site N MBE, MAE, RMSE, EF
mm mm mm

2001&1 82 17 20 27 -0.24
2001&2 82 13 19 23 -1.77
2001&3 81 -22 25 37 0.58
2002&1 120 -25 36 40 -3.28
2003&1 126 3 15 18 0.45
2003&2 124 -3 9 12 0.68
2003&3 116 2 8 10 0.98
2004&1 140 0 11 14 -14
2005&1 120 -5 14 20 -1.8
2005&2 121 -14 15 18 0.3
2005&3 127 1 34 38 -0.06

Pooled data 1239 -3 18 25 0.46




Table 3. Growing season total water inputs and outputs, and model recommended and actual irrigation amount. The unit for all

variables is mm. Total water loss (total of leaf interception, runoff, and percolation), Total ET demand, and Total simulated ET were

simulated from the Hybrid-Maize model by weather data and soil type.

Model Total Total Simulated
Year& Actual recommended Total Total water simulated measured minus
Site Type irrigation irrigation rainfall loss ET ET measured ET
2001&1  TIrrigated 300 185 242 71 498 505 -7
2001&2  Irrigated 292 183 242 74 501 466 35
2001&3 Rainfed 242 67 347 428 -81
2002&1  Irrigated 271 223 339 48 552 474 78
2003&1  TIrrigated 313 213 196 23 507 494 13
2003&2  Irrigated 297 212 197 18 508 531 -23
2003&3 Rainfed 149 11 297 404 -107
2004&1  Irrigated 191 128 352 90 526 472 54
2005&1  TIrrigated 283 160 271 65 524 450 74
2005&2  Irrigated 270 160 271 66 536 471 65
2005&3 Rainfed 271 15 414 421 -7
Average 276 183 256 42 474 465 49

4%
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Fig. 1. The CornWater web application (http://cornwater.unl.edu). A user can choose to register
an account for free or try it first. 1. Homepage for registration and login. 2. Google map for

locating a field. 3. Page for user specified crop management information. 4. Output page with a
notification message for irrigation recommendation and a graph showing rainfall and irrigation

events and model predicted soil water balance and crop water stress.
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Fig. 2. Simulated vs. measured daily soil water balance to the maximum rooting depth during the

growing seasons for the 11 site-year combinations at Mead, NE. The sample size is 1239. The

dashed line is 1:1 line; the solid line is the regression line of all points.
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red line is simulated soil water balance. S1, S2, and S3 indicate Site 1, Site 2, and Site 3,

respectively.
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at three sites at Mead, NE. The empty panels indicate no maize crop planted that year. The thin

black line is measured soil water balance, and the thick red line is simulated soil water balance.

S1, S2, and S3 indicate Site 1, Site 2, and Site 3, respectively.
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balance. S1, S2, and S3 indicate Site 1, Site 2, and Site 3, respectively.
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Chapter 3
Validating Hybrid-Maize Model on Crop Growth and Water Use under Variable Irrigation in

Nebraska

Abstract

Crop simulation models have the potential of guiding irrigation and saving water. A 2-
yr field experiment was conducted to test the performance of the Hybrid-Maize (HM) model on
maize growth and crop water use under variable irrigation treatments included 100% (recharge
top 30 cm soil to field capacity), 75% and 50% of the 100%, and 0% (rainfed) in Lincoln,
Nebraska. The HM model simulated crop stages well in 2014 but in 2013 predicted silking and
maturity 5 and 15 d earlier, respectively, than observations. The model simulated LAI reasonably
well in 2014 but overestimated LAI by 1.0 at maximum LAI for all treatments in 2013. HM
model predicted in-season aboveground biomass dynamics well but underestimated it at maturity
by 1.58 Mg ha™! with RMSE = 2.05 Mg ha''. HM model underestimated grain yield for all
treatments in both years by 1.69 Mg ha™! with RMSE = 2.17 Mg ha™!, indicating that the model
needs to be improved for a dry year such as 2013. Simulated daily soil moisture balance agreed
well with observations for the whole root zone (1.5 m), but less well for soil depths at 0-30 cm,
30-60, and 60-150 cm, respectively. The results indicated that the performance of HM model is
no solely affected by total water input in the season, but also the climate such as average mean
temperature and the planting date. HM model can perform well in a relatively wet year for
biomass and grain yield simulation, while it performed well on estimating total soil water

balance at the root zone for a silty clay loam soil type.
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Abbreviations: HM model, Hybrid-Maize Model; LAI, leaf area index

Introduction

The state of Nebraska has the largest irrigated crop area in USA with 8.3 Mha mostly
for maize and soybean production (USDA-NSSA, 2014). Average irrigated maize yield was 12.1
Mg ha! while the rainfed maize yield was 7.9 Mg ha! (USDA-NASS, 2012). On the other hand,
irrigation has led to a decrease of groundwater table despite regular recharging of the Ogallala
Aquifer (Singh et al., 2016; Xue et al., 2014).

Drought has happened more frequently in the last 20 yr (Woodhouse et al., 2015). As a
result, demand for irrigation water has been high and increasing. Sometimes, producers don’t pay
close attention to water use efficiency simply because the yield of irrigated maize can be 30%
higher than rainfed maize (USDA-NASS, 2012) and, producers tend to apply an excessive
amount of irrigation water to reduce the risk of yield losses due to drought stress (Fereres and
Gonzalez-Dugo, 2009; Grassini et al., 2011). This farming practice can lead to lower economic
returns because of unnecessary irrigation water while increasing the risk of nitrogen leaching
(Irmak, 2008; Hu et al., 2010). Improving water productivity should be considered as one of the
targets of farming practice (Djaman and Irmak, 2012).

Deficit irrigation is a practical and promising irrigation strategy for saving water in a
semiarid environment such as Nebraska (Payero et al., 2005; 2006). It saves irrigation water
while producing high yield although not the maximum yield compared to full irrigation.
Although deficit irrigation can affect the crop growth (Payero et al., 2006), it will likely become
a trend of the future with freshwater becoming a more limited resource (Elliott et al., 2014).

Using crop models to study yield response to irrigation has become common. Studies
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have been conducted to test the accuracy of model simulation on crop growth and development,
and water uptake simulation under various irrigation conditions (Khoshravesh et al., 2013; Attia
et al., 2016a; Attia et al., 2016b; Heng et al., 2009). However, cautions must be taken because of
model limitations and deficiencies (Di Paola et al., 2016). Under conditions of full irrigation,
models can capture well crop growth, development, and yield. For example, Yang et al. (2004)
reported the Hybrid-Maize model accurately simulated maize yield in Nebraska and lowa of the
USA under good crop management without drought stresses. Under conditions of deficit
irrigation, however, crop growth can be affected, especially if the crop water requirement cannot
be met during pollination and grain filling stages, whereas crop models may not be able to
capture all the effects adequately (Ahmadi et al., 2015). It has been reported that crop biomass
accumulation responds linearly to ET water use, and the decrease of water supply can affect
grain yield (Payero et al., 2006). Meanwhile, water stress occurs when water supply from soil
does not meet crop water demand as determined by weather conditions (Denmead and Shaw,
1960; Traore et al., 2000). For maize, water stress during pollination and grain filling reduces the
ear size, number of kernels per ear, as well as kernel weight (Hall et al., 1982). As a result, deficit
irrigation makes it more difficult for models to accurately predict crop yield (Lovelli et al. 2007)
compared with full irrigation condition. Jin et al. (2016) reported that sixteen major maize
models which used different mechanisms such as water supply/water demand, ET supply/ET
demand, soil water content, etc., to determine the water stress. However, the performance of
those models under extreme weather conditions needs to be tested. The objective of this study
was to test the performance of the Hybrid-Maize model on the prediction of maize growth stage,
LAI, aboveground biomass, grain yield, and soil water balance under variable irrigation in

eastern Nebraska.
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Materials and Methods
Field experiment
The field experiment was conducted in two years in 2013 and 2014 at Lincoln,
Nebraska (43°38'19.39"N, 116°1428.86"W). Lincoln is in a temperate continental climate with
an average seasonal (May-Sep) precipitation of 435 mm (Torrion et al., 2014). The soil at the
study site is a fine, smectitic, mesic Cumulic Vertic Endoaquoll silty clay loam (Soil Survey Staff,
2016). The field was under an annual maize-soybean rotation. Prior to the start of the trial, the
field was disked to a 15-cm depth after soybean harvest, and leveled by a field cultivator in the
spring. After that, urea fertilizer was broadcast at a rate of 202 kg ha™'. Pre-pesticide Dual II
Magnum (1.3 pt) and Atrazine (1.13 kg ha™') were mixed and sprayed before another round of
field cultivator operation. Other field management practices followed University of Nebraska
guidelines for high yield maize production.
There were four irrigation treatments: 100% (recharge top 30 cm soil to field capacity),
75% and 50% of the 100%, and 0% (rainfed). Due to the annual rotation with soybean, the
experiment area was in two different parts of the field each year. For both years, a drought
tolerant hybrid Syngenta Agrisure Artesian X43297WP with a relative maturity 102 d was
planted to an area of 0.3 ha (73 m long x 37 m wide). The experiment was a randomized
complete block design with four replicates. Each plot was 8 rows wide and 6 m long with 0.76 m
spacing between rows. The timing of 100% irrigation treatment was guided by soil water sensor
readings (see next paragraph). Irrigation started whenever the reading in the 100% irrigation
plots suggested depletion of around 50% of available soil water in the rooting depth. For the 100%

irrigation treatment, 38 mm of water was applied each time, which is the common amount a
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center pivot delivers in Nebraska (Klocke et al., 1989). For the 75% and 50% irrigation
treatments, their amount was 75% and 50% of the 100% irrigation treatment, respectively. All
three irrigated treatments started at the same time, but their water supply was shut off at different
times depending on their designed irrigation amount.

We used surface drip tapes of 16 mm in diameter for irrigation. Water pressure was regulated and
water flow rate was monitored. We checked readings of soil water sensors of the 100% irrigation
plots each day and started irrigation when the water potential got close to the 150 centibars,
which was considered as the 50% depletion of available water for a silty clay loam soil in
Nebraska (Irmak et al., 2006).

We used Watermark Granular Matrix sensors (WGMS, Irrometer, Co., Riverside, Cal.)
to monitor soil water pressure. The sensors were glued to PVC pipe and installed at V3 stage to
30, 60, 90, and 120 cm soil depths close to a crop row. In addition, another two sensors were
installed to 90 and 120 cm depth in the middle of two rows. All sensors were installed vertically
and removed before harvest. The sensors were connected to a Watermark Monitor datalogger
(Irrometer Co., Riverside, Cal.) to record data each hour. Soil water sensors were installed in two
replicates. The sensor readings were converted to volumetric water content by the method
developed for soils in Nebraska (Irmak et al., 2006).

For crop data, we recorded crop stages twice a week, and measured LAI every ten days
using LAI-2200C (LI-COR Biosciences Inc., Lincoln, NE, USA (Pearse et al., 2016), total
aboveground biomass 3 times before maturity, and final grain yield and total biomass at maturity.
For biomass measurement, we randomly sampled 6 plants per plot for 2013 growing season and
10 plants per plot in 2014. Two weeks after maturity, we harvested a section of 6 m long of the

two middle rows for total biomass and grain yield. We used a hand held moisture meter
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(Dickey-john Harvest hand, Dickey-john Corp., Auburn, IL) to measure the kernel moisture and
converted grain yield to 15.5% standard moisture content.

For each season, we used Hybrid-Maize model to simulate the crop growth and development,
and daily soil water balance based on actual the crop management information and weather data
collected from an automated weather station of 1.3 km away from the study field. The crop

management information is given in Table 1.

Statistical analysis
A two-tailed paired Student’s t-test was used to test significant differences of the mean
differences between measurements and simulations (o = 0.05) for LAI, aboveground biomass,
and grain yield respectively. ANOVA was used to test the treatment effects on LAI, aboveground
biomass, and grain yield, respectively, and Tukey's HSD test was conducted to find the
differences between treatments. The performance of the model was evaluated by mean bias error
(MBE), root mean squared error (RMSE), and modeling efficiency (EF) for LAI, aboveground

biomass, grain yield, and total soil water balance:

n
1
i=1

MBE = 1S — M)
n
n 2
_ i=1(Si — M)
EF =1 — - =

Where S; is the simulated value, M; is the measured value, n is the number of data pairs, M is

the average of measured values. RMSE measures the deviation of overall mean between
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simulated and measured values. A RMSE value close to zero indicates good model performance.
RMSE has the same unit as Siand M; thus it is easy to interpret, however, large errors can be
weighted heavily (Willmott, 1982). MBE directly indicates if the model underestimates (negative
value) or overestimates (positive value) the measured values and offers uniformity of error

distribution. EF ranges from -oo to 1. An EF value close to 1 indicates the model is better, while

an EF value smaller than zero indicates M predicts better than the model. In crop modeling, EF

= 0 is considered as the lower limit of model quality (Wallach et al., 2006).

Results
Weather conditions from emergence to maturity

The temperature in 2013 and 2014 growing season was similar, but the mean minimum
temperature after silking was 1 °C lower in 2014 than in 2013. 2013 was drier than 2014 with 60
mm less in-season rainfall (Table 2). 2013 was particularly dry after silking, with only 53 mm
rainfall, which was 190 mm less than 2014. In comparison, the long-term average rainfall for the
same period was 155 mm. Moreover, the after-silking water input (rainfall after silking +
irrigation) indicated the 100% irrigated and rainfed treatments received 69 and 190 mm more
water in 2014 than 2013, respectively (Table 1). The planting date of 2014 was May 18" (DOY
138), which was 10 d later than 2013, but both years had almost the same date of silking (Table
1). In addition, the shorter growing period in 2014 than 2013 can be translated into 301 MJ m™

less total solar radiation than in 2014.

Crop stages

The performance of simulation was better in 2014 than in 2013 for reproductive stages
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simulation, while was similar for vegetative stages. HM model predicted vegetative and
reproductive stages in a reasonable range for 2014 but not for 2013 (Fig. 1). The greatest
difference between simulations and observations was the maturity date in 2013. The simulated
maturity date was August 25" (DOY 237), which was 12 and 15 d earlier than the observations in
rainfed and irrigated treatments, respectively. The rainfed treatment matured on September 6
(DOY 252) in 2013 because of the occurrences of water stress. In 2014, the simulated maturity
was only 2 d earlier than the observation. For the silking date simulation in 2013, irrigated
treatments predicted 4 d earlier than the actual date, but only 1 d earlier for the rainfed treatment.
Most other simulated reproductive stages of 2013 differed from the measurements by 6 to 11 d.
In 2014, HM model predicted silking dates by 2 d late for all treatments. For vegetative stage
simulation in both years, the differences were less than 3 d. The less variations between
simulated and observed reproductive stages in 2013 can be attributed to the adequate rainfed

amount (243 mm) after silking stage in 2014 (Table 2).

LAI

HM model overestimated the maximum LAI in the mid-season across all treatments in
the 2 yr (Fig. 2), and the difference between simulated and measured LAI was greater in 2013
than in 2014. The treatments caused LAI differences between rainfed to 100% irrigation (p =
0.03) and rainfed to 75% irrigation (p = 0.003) respectively in 2014, but the differences between
simulated and measured were similar regardless of treatments. The rainfed treatment in both
years showed accelerating effects of drought on leaf senescence shortly after the silking, while
the three irrigated treatments showed no difference. The EF showed HM model can barely

simulate LAI well (EF = 0.01) with a RMSE = 0.94 (Table 3). Such a value of RMSE is 20% of
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the measured mean L AL, which is considered to be large. However, the t-test showed there was
no statistical difference between measured and simulated values (p = 0.27). The negative MAB
values in 2014 were caused by underestimated LAI after August 8" (DOY 220) when intensive
measurements were taken. Different irrigation treatments did not affect the maximum LAI
simulation and the relative low LAI in 50% irrigation in 2013 was caused by a lower plant
population. When the measured LAI reached a peak of 4.0, simulated LAI was 5.0 in 2013. The
measured and simulated LAI reached their peak at the same date which indicated HM model
simulate the maximum LAI well at the silking stage in DOY 194 and DOY 193 when the plant
started to flowering in 2013 and 2014, respectively. The simulated LAI showed a similar trend of
declining compared with measured LAI after silking. However, the decline of measured LAI
slowed down in mid-August (DOY 220) compared with simulated LAI, which showed a quicker

decline. This indicated a slower leaf senescence than in the fields than HM model prediction.

Aboveground biomass

HM model estimated well in-season aboveground biomass accumulation but
underestimated the end-season value in both years, especially in 2014 (Fig. 3). The treatment
effects were not significant in both years (p = 0.47). The differences between simulated and
measured values among treatments varied but were obvious at the final measurements. The
underestimation of final aboveground biomass was largely affected by grain yield estimation
(Fig. 5). Because when we compared simulated stover biomass with measured ones at harvest,
we found the simulated one was greater than averaged measurements by 1.3 Mg ha™! in 2013 and
less than the measurements by 0.4 Mg ha™! in 2014, respectively. Still, the performance of HM

model on aboveground biomass simulation was acceptable with EF = 0.85. The RMSE was 3.25
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Mg ha! which is 15% of measured aboveground biomass with an overestimation of 0.27 Mg ha™!.
The simulated value decreased after mid-August (DOY 220), possibly caused by the use of
carbohydrate reserve for grain filling at times when daily net dry matter production grain cannot

be meet the demand for grain filling (Yang et al., 2004).

Yield

HM model underestimated grain yield (at 15.5% moisture) by 1.8 and 1.3 Mg ha'! in
2013 and 2014 respectively with a RMSE =2.17 Mg ha™!, which accounted for about 18% of the
average yield of 12.36 Mg ha'! for the field (Fig. 4; Table 3). The treatments did not affect the
performance of simulations except in rainfed treatment in 2013. For the rainfed treatment in
2013, the model underestimated the yield the most by 3.35 Mg ha"! among all treatments and
years combined. The actual yield was not affected by the end season water stress in 2013. In fact,
the rainfed treatment caused slight reduction of the yield compared with 75% and 50% irrigation
treatment in 2013, which indicated either the total water supply from rainfall was close to being
sufficient, or we did not apply enough irrigation for irrigated treatments. In 2014, the rainfed
treatment showed differences compared with 100% irrigation (p = 0.006) and 75% irrigation (p =
0.009), respectively. In contrast, simulated yields showed almost no differences for the three
irrigated treatments in 2013 and in 2014, except the 50% irrigation with low plant population in

2013.

Soil water balance
Simulated soil water balance to 1.5 m depth agreed well with the measured water

balance (Fig. 5). The EF was 0.67 which indicated the model can simulate water balance well for
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a silty clay loam soil (Table 3). An underestimation by the model in irrigated treatments appeared
during the mid-season of 2013 while the measured water balance did not show such trend (Fig.
5). In 2014, there was a rapid increase of simulated water balance showed after July 19" (DOY
200). Surprisingly, HM model estimated water balance well for rainfed treatment in both years.
The sensors did not be installed until June which resulted the measured results started late
compared with simulated one, while the simulated maturity date was earlier than the
measurement so as the end date of water balance simulation.

The 0 to 30 cm soil depth saw a large variation between simulated water balance and
the measurement (Fig. 6). The rapid decrease of simulated water balance in the mid-season in
2013 corresponded to the low water input from rainfall and irrigation for all irrigation treatments.
This pattern was clear especially under 50% irrigation when early season rainfall was adequate
but in-season water input was low (Fig. 6). In contrast, the simulation showed less water
withdrawal and fast soil profile recharge in 2014 when water input was higher than 2013 during
the same period for the irrigation treatments. Clearly, the measured results were less affected by
water input compared with simulated ones, which reflected HM model was more sensitive to
water input at this soil depth than the measurement. The best simulations occurred in 50%
irrigated and rainfed treatments in 2014 when they matched the measurement well, while other
simulations showed less than 30% difference on various dates across treatments.

For the 30 to 60 cm soil depth, the greatest difference was about 20 mm between
measured and simulated water balance (Fig. 7). The trend difference between simulated and
measured soil water balance appeared in the mid-season. The model simulated a deep drop in
water balance for all treatments in the two years. For the irrigated treatments, this decline caused

a mismatch between measurement and simulation but led to a good match for the rainfed
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treatment in 2014. The measured water balance showed a delay of decrease compared with
simulated results, which looks similar at 0 to 30 cm soil depth (Fig. 6). The drop of water
balance by simulation indicated HM model might estimate water depletion faster than what
actually happened in the field. Also, the less water input under 50% irrigation and rainfed
condition could increase the possibility of predicting water stress too early with corresponding
early maturity.

From 60 to 150 cm soil depth, the measurement and simulation were surprisingly close
except in 100% irrigation treatment in 2014 where HM model overestimated water balance by 25
mm (Fig. 8). In the rainfed treatment, the measured water balance showed a continuous decrease
even when the simulated one slowed down the pace of decrease, which indicated an intense
water withdrawal happened which was not captured by HM model. It was possible the root of
maize could have reached more than 1.5 m in the treatment for both years which caused the
continuous decrease. The simulation overestimated measured values by only 50 mm by August

28" (DOY 240) at rainfed treatments in both years.

Discussion
Crop growth stage
For cereal crops like maize, the accuracy of model simulation of grain yield depends
greatly on whether the flowing and maturity dates are be predicted reliably. Because a right
partition of vegetative and reproductive stages corresponds with a reasonable partition of LAI,
aboveground biomass, and grain yield, respectively. The HM model evaluation study showed
relatively less satisfactory model performance under high plant density conditions with high

temperature (Yang et al., 2004). In our study, since there was only plant density across all
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treatments, HM model performance was attributed to not only the differences in water input but
climate variations in the two years, especially mean maximum and minimum temperature. Our
results suggest HM model simulated crop stages well in 2014 when irrigation was sufficient. The
low water input (rainfall + irrigation) after silking in 2013 may have caused the crop to behave
differently compared with a regular hybrid. And since HM was previously developed and
parameterized for non-drought-tolerant hybrids, the model may not be able to capture all
characteristics of the new hybrid. And a relative higher whole season mean maximum
temperature and a relative low night temperature in reproductive stages in 2014 compared with
in 2013 may result in a better crop stage simulation. In addition, the relative maturity of the
hybrid we used was 102 d, which was considered a shorter maturity in this area. The length of
crop growth cycle in 2013 was 125 d, which was 19 d longer than 2014. The reason of the
relatively long maturity in 2013 could be the cause by that we missed the actual maturity date at
the end of August.

The observed silking and maturity dates were 5 d and 15 d later than the simulation,
respectively. It demonstrated the inaccuracy of stage simulation in 2013. However, it was not
caused by observation error on the silking date because the silking event was hard to miss with
our high observation frequency. With such a difference in silking date simulation, the poor
following estimation on maturity date was expected. However, it did not fully explain why the
maize matured so late in 2013 in the field than simulation. The cumulative GDD from planting to
the observed date of black layer in 2013 was 263 higher than the total GDD of RM 102, but only
33 higher than 2014. Again, it can only be explained by that we measured the black layer later

than its actual appearance since the formation of black layer was subjective to some extent.
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LAI

Because the plant population and crop management were similar in both years, the
lower measured LAI in 2013 could be due to lack of calibration of the Plant Canopy Analyzer
used for measured for measure LAIL In 2014, we upgraded the LAI instrument to LAI-2200C
and found a new feature of diffusion correction changed measured LAI by about 5% in 2014.
The lack of diffusion correction could introduce deviation on measurement in 2013. However, it
would not be a major factor. Also, the sky condition will influence the measurement accuracy.
We took measurements in the afternoon under a clear sky condition for 90% of the times which
meet a standard requirement. In order to improve the measurement representation, we increased
the measurement frequency in the late season of 2014. The overestimation of LAl by HM model
lead to over simulation of dry matter production and carbohydrate reserve that be used for grain
filling (Yang et al., 2004). And the reason of overestimation of LAI can be due to the hybrid
parameter setting which is not specific to this drought tolerant hybrid since we did not have the
information. The rainfed treatment only slightly affected LAI values compared to irrigated
treatments in both years. This indicated irrigation and rainfed treatment did neither greatly

influence the performance of HM model nor actual crop growth itself.

Aboveground Biomass
The model underestimated final aboveground biomass across all treatments although
the in-season simulation was acceptable (Fig. 4). The reason of this underestimation of
aboveground biomass was HM model underestimated the grain yield while it simulated the final
stover biomass well. Note that the final biomass sampling was taken 10 d and 15 d after the

observed maturity dates, respectively, in 2013 and 2014. A higher final yield could be the result
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from the hybrid which may actually had a longer maturity than the suggested 102 d. If so, before
sampling the hybrid would be still growing, and naturally the simulated final aboveground
biomass would be greater. Nevertheless, the irrigated treatment resulted in greater
underestimation of final aboveground biomass than the rainfed treatment in 2014. It could
demonstrate the baseline of HM model performance on biomass simulation under an adequate
irrigation and rainfall environment. Moreover, the performance of aboveground biomass

simulation did not closely relate to adequate total water input.

Grain yield

It was unusual for a crop model such as HM model to underestimate grain yield
because most of the crop models estimate potential yield at optimal farming conditions and
usually show overestimation. The essence of this phenomenon could be that HM model was not
optimized for a drought tolerant hybrid rather than just used parameters as for regular hybrids.
With a short relative maturity of 102 d, HM model would predict maize reached R6 at the end of
August. The longer duration of growing cycle along with a longer grain filling period would
result in higher yield. When a late season drought occurred in 2013, the yield of rainfed
treatment predicted by HM model was much lower than in 2014 because the model terminated
the grain filling due to severe water stress. In reality, the hybrid may have grown normally
because of the drought tolerance. Although water stress played an important role on the grain
filling, we suspect HM model overweighed the impact of the level of water stress on yield. The
average yield in the two years was similar while the model predicted 2014°’s yields reasonably
well but not for 2013’°s which also was an indication that climate effect was critical for

simulation accuracy. The model used water and ET supply/demand relationship to determine
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crop water stress. It may be over sensitive to stress conditions for the new drought-tolerant
hybrids. On the other hand, the distribution of water input throughout the season might be more
important than the total amount. Grain yield will be affected if water supply does not meet crop
ET demand on a daily basis during grain filling although total water input may meet the total

demand on a seasonal basis.

Soil water balance

HM model performed well to match the measured soil water balance for the entire 1.5
m rooting zone. The difference between measured and simulated water balance happened more
frequently when there were intensive water input events or a shortage of water input in a
continuous period. For the upper 30 cm soil depth, however, the fluctuation of simulated water
balance was more obvious, which is directly related to the frequency and amount of water input
during the growing season. The reason that simulated water balance was sensitive to water input
was HM model used a “tipping bucket” method to calculate soil water balance of a given layer.
Water does not move from the upper layer to the lower layer until that layer has reached field
capacity. In reality, however, water starts to infiltrate to the next soil layer before the current
layer reaches field capacity as Richards equation describes (Van Dam and Feddes, 2000). So
when an input from rainfall or irrigation causes an increase of the simulated water balance only
at the upper soil layer before the soil reaches field capacity, the measured water balance was
rising in top soil layer but also the layer beneath. That was the reason we did not see the
measured water balance increase to a similar degree as simulated. For the 30 to 60 cm soil depth,
the measured water balance naturally had a greater water content than the simulation simply

because of more water infiltration from the 0 to 30 cm soil layer. In contrast, HM model
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estimated more water retention in the top 30 cm soil layer and relative less water infiltration in
the 30 to 60 cm. We assumed that, if the model simulated the root density distribution at each
soil layers correctly, we would have more intense water withdrawal at 30 to 60 soil depth
compared with the measurement since less input water would reach this layer after rainfall or
irrigation in the model. It turned out that when roots have reached most of the soil volume and
plant canopy has closed in the mid-season, an increase of water withdrawal would be shown by a
rapid decrease of water content at 30 to 60 cm soil depth as a significant amount of roots were
present in this depth. For the 60 to 150 cm soil layer, the simulation behaved very well under the
irrigated treatments, which was similar to the rainfed treatment. This good match was because
there was little water input into this depth, and daily water uptake across all treatment was
similar while the water amount was sufficient at this depth. We can see a similar pattern at 30 to
60 cm soil depth whenever there was little or no water input to the system, such as the rainfed
treatment; the simulation tended to perform well until HM model predicted water stress.
However, we have not found a good explanation about the delay of measurement under rainfed
treatment at top 30 cm soil depth in 2013. In general, HM model performed well on simulating
water balance at the total rooting depth, which was critical to irrigation management in the field
when using such a model as irrigation decision support tool.

The simulation of soil water balance was almost independent to the biomass and grain yield
simulation unless there was water stress. This made the water stress extremely important in the
model. In the model, crop water stress will occur if water supply from the soil cannot meet crop
ET demand as determined by weather conditions. Another aspect related to drought was how
sensitive the HM model would respond to heat stress, as heat stress would likely occur with

drought. Although several physical processes in the model, including photosynthesis,
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maintenance respiration, and kernel growth, respond to temperature, there are no specific
functions to account for possible heat stress or damage to crop functions. More quantitative
research and model improvement are needed to account better for effects of drought and

resulting heat stress.

Conclusion
Overall, HM model simulated maize phenology, LAI, and yield reasonably well under
different irrigation conditions of Nebraska. The model also simulated well water balance of the
total rooting depth. However, the model has the tendency of predict crop stage earlier,
underestimated maize grain yield for the two years’ experiment. Deficit irrigation and rainfed
have less effect on simulation accuracy for soil water balance, but more effect on biomass and
yield simulations, respectively. The climate from different years had more effect on simulation

quality than water input.

References
Ahmadi, S.H., S.H., E. Mosallaeepour, A.A. Kamgar-Haghighi, and A.R. Sepaskhah. 2015.
Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit
Irrigation Managements. Water Resour. Manag. 29:2837-2853.
do0i:10.1007/s11269-015-0973-3
Attia, A., N. Rajan, S.S. Nair, P.B. Delaune, Q. Xue, M. Amir, H. Ibrahim, and D.B. Hays. 2016a.
Modeling Cotton Lint Yield and Water Use Efficiency Responses using Cotton2K. Agron. J.
108:1-35. doi: 10.2134/agronj2015.0437

Attia, A., N. Rajan, Q. Xue, S. Nair, A. Ibrahim, and D. Hays. 2016b. Application of



70

DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management
in the Texas High Plains. Agric. Water Manag. 165:50—-60.

CropWatch. 2012. Nebraska Irrigated and Rainfed Corn Yield Trends. CropWatch. IANR Media,
Univ. Nebraska - Lincoln. http://cropwatch.unl.edu/corn/yieldtrends (accessed 10 October
2016).

Denmead, O.T., Shaw, R.H., 1960. The effects of soil moisture stress at different stages

of growth on the development and yield of corn. Agron. J. 52:272-274.

Van Dam, J.C., and R.A. Feddes. 2000. Numerical simulation of infiltration, evaporation and
shallow groundwater levels with the Richards equation. J. Hydrol. 233:72—85.

Djaman, K., and S. Irmak. 2012. Soil water extraction patterns and crop, irrigation, and
evapotranspiration water use efficiency of maize under full and limited irrigation and
rainfed settings. Trans. ASABE. 55:1223—-1238.

Elliott, J., D. Deryng, C. Miiller, K. Frieler, M. Konzmann, D. Gerten, M. Glotter, M. Florke, Y.
Wada, N. Best, S. Eisner, B.M. Fekete, C. Folberth, I. Foster, S.N. Gosling, I. Haddeland, N.
Khabarov, F. Ludwig, Y. Masaki, S. Olin, C. Rosenzweig, A.C. Ruane, Y. Satoh, E. ScCHM
modelid, T. Stacke, Q. Tang, and D. Wisser. 2014. Constraints and potentials of future
irrigation water availability on agricultural production under climate change. Proc. Natl.
Acad. Sci. U. S. A. 111:3239-44.

Fereres, E. and V. Gonzalez-Dugo, 2009. Improving productivity to face water scarcity

in irrigated agriculture. Crop physiology: applications for genetic improvement and
agronomy. Academic Press, San Diego, p.123-143.
Grassini, P., H. Yang, S. Irmak, J. Thorburn, C. Burr, and K.G. Cassman. 2011. High-yield

irrigated maize in the Western U.S. Corn Belt: II. Irrigation management and crop water



71

productivity. F. Crop. Res. 120:133-141.

Hall, A.J., F. Vilella, N. Trapani, and C. Chimenti. 1982. The effects of water stress and genotype
on the dynamics of pollen-shedding and silking in maize. Field Crops Research, 5:349-363.

Heng, L.K., T. Hsiao, S. Evett, T. Howell, and P. Steduto. 2009. Validating the FAO aquacrop
model for irrigated and water defi cient field maize. Agron. J. 101:488—498.
doi:10.2134/agronj2008.0029xs

Hu, K., Y. Li, W. Chen, D. Chen, Y. Wei, R. Edis, B. Li, Y. Huang, and Y. Zhang. 2010. Modeling
nitrate leaching and optimizing water and nitrogen management under irrigated maize in
desert oases in Northwestern China. J. Environ. Qual. 39:667—677.
doi:10.2134/jeq2009.0204

Irmak, S., W.R. Engineer, J.O. Payero, I. Engineer, D.E. Eisenhauer, I. Engineering, L. Kranz, I.
Specialist, D.L. Martin, G.L. Zoubek, E. Educator, J.M. Rees, B. Vandewalle, A.P.
Christiansen, D. Leininger, and W. Conservationist. 2006. Watermark Granular Matrix
Sensor to Measure Soil Matric Potential for Irrigation Management. Publ. Univ.
Nebraska-Lincoln Extension. http://lancaster.unl.edu/ag/crops/watermark sensor.pdf
(accessed 7 October 2016)

Irmak, S., and W.R. Rathje. 2008. Plant Growth and Yield as Affected by Wet Soil Conditions
Due to Flooding or Over-Irrigation. Publ. Univ. Nebraska-Lincoln Extension, Lincoln.
http://www.ianrpubs.unl.edu/epublic/live/g1904/build/ (accessed 2 September 2016).

Irmak, S. 2008. Plant Growth and Yield as Affected by Wet Soil Conditions Due to

Flooding or Over-Irrigation (Revised April 2014). Publ. Univ. Nebraska-Lincoln
Extension. http://extensionpublications.unl.edu/assets/html/g1904/build/g1904.htm

(accessed 7 October 2016).



72

Khoshravesh, M., B. Mostafazadeh-Fard, M. Heidarpour, and A.-R. Kiani. 2013. AquaCrop
model simulation under different irrigation water and nitrogen strategies. Water Sci. Technol.
67:232-238. doi:10.2166/wst.2012.564

Klocke, N.L., Eisenhauer, D.E., Specht, J.E., Elmore, R.W. and G.W. Hergert. 1989. Irrigation
soybeans by growth stages in Nebraska. Applied Engineering in Agriculture, 5:361-366.

Lovelli, S., M. Perniola, A. Ferrara, and T. Di Tommaso. 2007. Yield response factor to water
(Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agric.
Water Manag. 92:73—-80.

Di Paola, A., R. Valentini, and M. Santini. 2016. An overview of available crop growth and yield
models for studies and assessments in agriculture. J. Sci. Food Agric. 96:709-714.
doi:10.1002/jsfa.7359

Payero, J.O., S.R. Melvin, and S. Irmak. 2005. Response of soybean to deficit irrigation in the
semi-arid environment of West-Central Nebraska. Trans ASAE 48:2189-2203.
doi:10.13031/2013.20105

Payero, J.O., S.R. Melvin, S. Irmak, and D. Tarkalson. 2006. Yield response of corn to deficit
irrigation in a semiarid climate. Agric. Water Manag. 84:101-112.

Pearse, G.D., M.S. Watt, and J. Morgenroth. 2016. Comparison of optical LAI measurements
under diffuse and clear skies after correcting for scattered radiation. Agric. For. Meteorol.
221:61-70.

Singh, S., S. V. Angadi, R. St. Hilaire, K. Grover, and D.M. VanLeeuwen. 2016. Spring
Safflower Performance under Growth Stage Based Irrigation in the Southern High Plains.
Crop Sci. 56:1878—-1889. doi: 10.2135/cropsci2015.08.0481

Soil Survey Staff, Natural Resources Conservation Service, United States Department of



73

Agriculture. Soil Survey Geographic (SSURGO) Database. Available online at
http://sdmdataaccess.nrcs.usda.gov/. Accessed (09/12/2016).

Torrion, J.A., T.D. Setiyono, G.L. Graef, K.G. Cassman, S. Irmak, and J.E. Specht. 2014.
Soybean irrigation management: Agronomic impacts of deferred, deficit, and full-season
strategies. Crop Sci. 54:2782-2795. doi:10.2135/cropsci2014.03.0261

Traore, S.B., Carlson, R.E., Pilcher, C.D., Rice, M.E., 2000. Bt and Non-Bt maize

growth and development as affected by temperature and drought stress. Agron. J.
92:1027-1035.
USDA-NASS. 2012. 2012 Census of agriculture - Farm and ranch irrigation survey
(2013). Vol. 3. Special studies. Part 1. USDA-NASS, Washington, DC

Wallach, D., D. Makowski, and J.W. Jones. 2006. Working with dynamic crop models :
evaluation, analysis, parameterization, and applications. Elsevier.

Wang, J., X. Liu, X. Zhang, P. Smith, L. Li, T.R. Filley, K. Cheng, M. Shen, Y. He, and G. Pan.
2016. Size and variability of crop productivity both impacted by CO2 enricHM modelent
and warming-A case study of 4 year field experiment in a Chinese paddy. Agric. Ecosyst.
Environ. 221:40-49.

Willmott, C. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol.
Soc. 63:1309—-1313.

Woodhouse, C.A., D.M. Meko, G.M. MacDonald, D.W. Stahle, and E.R. Cook. 2015.
Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci.
Adv. 1(1): p.e1400082. doi:0.1126/sciadv.1400082

Xue, Q., J.C. Rudd, S. Liu, K.E. Jessup, R.N. Devkota, and J. Mahan. 2014. Yield determination

and water-use efficiency of wheat under water-limited conditions in the U.S. Southern High



Plains. Crop Sci. 54:34—47. doi:10.2135/cropsci2013.02.0108
Yang, H. S., A. Dobermann, J. L. Lindquist, D. T. Walters, T. J. Arkebauer, and K. G. Cassman.
2004. Hybrid-maize - A maize simulation model that combines two crop modeling

approaches. F. Crop. Res. 87:131-154.

74



Table 1. Maize crop information of the experiment in Lincoln, NE. The hybrid was Syngenta Agrisure Artesian X43297WP with a

relative maturity 102 d.

Plant Total irrigation + after-  Total water supply,
population, irrigation, silking rainfall, mm mm?
Year Treatment 1000/ha Date, DOY! mm
Planting Emergence Silking  Maturity
2013 100% 82 128 135 194 252 387 440 1012
75% 82 128 135 194 252 295 348 920
50% 72 128 135 194 252 194 247 819
Rainfed 82 128 135 194 249 0 53 625
2014 100% 80 138 143 193 243 266 509 951
75% 79 138 143 193 243 203 446 888
50% 80 138 143 193 243 133 376 818
Rainfed 80 138 143 193 243 0 243 685

'DOY: date of the year.

2The total water supply in the field included available soil water in the maximum rooting depth (1.5 m) at planting, total

rainfall from planting to maturity, and total irrigation.
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Table 2. Summary of weather conditions during planting to maturity of 2013 and 2014 at Lincoln, NE.

Silking to maturity

Year Planting to maturity Planting to silking
Days Tmax, Tmin Rainfall Days Tmax Tmin Rainfall Days Tmax Tmin Rainfall
°C °C mm °C °C mm °C °C mm
2013 125 288 173 294 66 275 159 240 59 30.3 19.0 53
2014 106 293 172 354 55 28.8 165 179 51 29.9 18.0 243

9L



Table 3. HM model performance on simulation of LAI, aboveground biomass (AGB, Mg ha™'), grain yield (Mg ha™!, and daily soil

water balance (WB, mm) to the maximum rooting depth (1.5 m) during the growing seasons of 2013 and 2014. RMSE is the root

mean square error, MBE is the mean bias error, and EF is the modeling efficiency.

LAI AGB Yield WB

Year Treatment MBE RMSE EF MBE RMSE EF MBE RMSE EF MBE RMSE EF
2013 100% 0.5 1 0.33 -0.23 2.85 0.87 -2.31%* 2.34  -35.29 -11 29 -1.51
75% 0.69 1.15  0.06 0.52 2.31 0.89 -1.13 1.56 -1.1 -18 33 -0.46

50% 0.49 0.98 0.29 0.92 22 09 -1.23 1.8 -0.86 -24 33 0.18

Rainfed 0.42 1.16 -0.05 0.66 227 0.84 -3.35% 347 -12.66 -16 33 0.83

2014 100%  -0.19 0.8 -0.17 -1.59 432 0.81 -1.85 2.23 2.2 38 48 -2.28
75%  -0.26 0.83 -0.39 -1.24 4.44 0.81 -1.81 2.08 -3.1 23 35 -0.35

50% -0.23 0.79 -0.14 -0.88 3.74  0.84 -0.93 1.48 -0.65 -5 21 0.65

Rainfed -0.45 1.06 -1.1 -0.29 295 0.86 -0.91 1.74 -0.38 21 33 0.87

Pooled

data -0.04 0.94 0.01 -0.27 3.25 0.85 -1.69* 2.17 -0.91 2 34 0.67

* indicates significant at p=0.05 in the paired two-tailed #-test.
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Fig. 2. Measured vs simulated LAI The red circle is simulated LAI, and the black triangle is the

measured LAI. The black bar is S.E. of the measurements.
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Fig. 7. Simulated vs. measured daily soil water balance for 30 to 60 cm soil depth during the
growing seasons for the four irrigation treatments at Lincoln, NE. The thin black line is measured
soil water balance, the thick red line is simulated values, the green bar is irrigation, and the blue

bar is rainfall.
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Fig. 8. Simulated vs. measured daily soil water balance for 60 to 150 cm soil depth during the
growing seasons of 2013 and 2014 for the four irrigation treatments at Lincoln, NE. The thin
black line is measured soil water balance, the thick red line is simulated values, the green bar is

irrigation, and the blue bar is rainfall.
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Chapter 4

CornSoyWater: A web and mobile app for irrigation decision making for corn and soybean

Abstract

As data related to agriculture become more readily available, researchers and software
engineers can work together to deploy science-based applications to aid agricultural decision
making. We built an irrigation app called CornSoyWater (http://cornsoywater.unl.edu) for
irrigation decision making for corn and soybean fields. This documentation described the use of
the app and its component, structure and workflow. The concept was to run multiple crop
simulation models on a server while using web services to acquire real-time weather data and
forecast; user specified soil data and crop management information were acquired through a user
interface (UI). The outputs were rendered to the users' computers or mobile devices (e.g.,
smartphones). The outputs include the current and 10-day predictions of crop stages, available
soil water balance, and recommendation for irrigation. For using the app, a user needs to register
a free account of the app that maintains the information of all his/her fields in a secured database.
After login, the app first shows all the fields the user has registered in the Google Map using
icons of two colors: the red icons are fields that need irrigation now or soon, while the green
icons are fields that have adequate water now and in the near future. The user can select any
specific fields for detailed outputs and recommendations. Currently, the app covers ten states in
the High Plains region in the western U.S. Corn Belt and has been tested by field data. It is being

promoted by agricultural extension educators in Nebraska and so far has 1200 registered users.

Keywords: Web mobile app, irrigation, crop modeling
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Introduction

Irrigation has been a critical part in crop management, farm profitability, and natural
resource conservation in the Midwest USA. Corn and soybean production are the main economic
return for agriculture in Nebraska. Better irrigation management, e.g., reducing water withdrawls
at crop stages that are less important for yield formation, and synchronizing crop water supply
with demand, can lead to reducing water withdrawls, saving energy, increasing crop water use
efficiency, and higher profitability (Irmak et al., 2000 and 2012). To achieve this, producers need
timely and comprehensive information such as what stage the crop is currently at, how much
water is in the soil rooting zone, whether the crop is under water stress, and how much irrigation
water is required to meet irrigation targets. With increasing demand for irrigation water and more
extreme weather occurring in recent years, irrigation “smarter”, data-driven technologies would
eventually become the mainstream in agricultural production in the future. For example, instead
of manually turning on the irrigation system and letting it run for long hours, nowadays
producers can use mobile apps to turn it on only when in-field moisture sensors detect the water
stress. With high accessibility of internet and increasingly cheaper data than before, various the
web and mobile applications have been developed in the last few years for helping farming
practice and decision making, especially on irrigation (Mauget et al., 2013; Caicong et al., 2016;
Jordan et al., 2016; Mbabazi et al., 2016; Andales et al., 2014; Bartlett et al., 2015; Vellidis et al.,
2016). Those apps operate by a similar principle which is to run a meteorological or a
generic/specific crop model(s) on the back end of a server, and use various weather data sources
as model input along with crop and soil inputs to create insightful outputs for users such as

producers. In order to improve irrigation management and save irrigation water and energy, we
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developed an irrigation app CornSoyWater (http://cornsoywater.unl.edu) to aid producers in
irrigation decision making for corn and soybean fields. This app is HTML 5 based, running on
web browsers and can be used on most operating systems including Window, Mac OS, and

Linux.

Brief description of CornSoyWater

Prior to the development of CornSoyWater, SoyWater (http//soywater.unl.edu), an
irrigation app was developed to aid soybean irrigation. Soy Water was based on the SoySim
model (Setiyono et al. 2010). A separate irrigation app for corn, Corn Water
(http://hprcc-agron0.unl.edu/cornwater/), was developed based on the Hybrid-Maize model
(Yang et al., 2004, 2006; http://hybridmaize.unl.edu). CornSoyWater revised and integrated
SoyWater and CornWater, with a redesigned user interface. CornSoyWater provides irrigation
recommendation to producers in most parts of the High Plains region. CornSoyWater simulates,
on daily time steps, up-to-date with 10-day predictions, crop stage and growth, and estimates soil
water balance based on water inputs from precipitation and irrigation and simulated crop water
use. CornSoyWater will call for irrigation in either of the two situations: available water in the
soil rooting zone drops below the pre-defined threshold, or soil water supply to the crop cannot
meet water demand based on weather condition and crop canopy size. With the ability to give
irrigation recommendations for both corn and soybean fields, CornSoyWater can help producers
improve their irrigation management.

In principle, the geographic coverage of CornSoyWater depends on the availability of
daily weather data sources. The weather data for CornSoyWater currently are from the

Automated Weather Data Network (AWDN) operated by the High Plains Regional Climate
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Center at University of Nebraska - Lincoln (HPRCC; http://www.hprec.unl.edu). AWDN collects
weather data each day and uses quality control procedures to ensure the quality of the data before
storing the data in the database. Currently, AWDN has 225 active weather stations which cover
most farming areas of Nebraska, and part of Colorado, lowa, Kansas, Minnesota, Missouri,
Montana, North Dakota, and Wyoming. We also have access to Michigan Automated Weather
Network (MAWN) which covers the Michigan state. At present, the program uses apixu
(http://www.apixu.com/), a weather API service for 10-day weather forecast data.

To use CornSoyWater, go to the CornSoyWater home page at http://cornwater.unl.edu
in a web browser (Fig. 1). A new user will need to register an account for free. After account
registration and activation through the link sent to his/her email, the user can log into the
program. To help users know more about the program and its operations, we also prepared
YouTube tutorials on the home page. After login, a new user will need to add one or more corn or
soybean fields of his/her interest. To do so, the user needs to locate the field on the Google Map
by either street name, zip code, or geographic coordinate of the field (Fig. 2). In the background,
CornSoyWater uses the field coordinate to determine the closest weather station in AWDN
system and retrieves the weather data as the input to the program. The retrieved weather data
include maximum and minimum temperature, solar radiation, relative humanity, precipitation,
and alfalfa referenced ET. If the closest weather station is beyond a threshold distance (default 20
miles or 32 km), CornSoyWater will pop up a warning message because simulation results may
be prone to errors due to poorly represented weather data. Once the nearest weather station is
found within 32 km, CornSoyWater will display the next page and ask the user to provide crop
management information (Fig. 3). The required crop management information includes 1) crop

maturity, 2) date of planting, 3) plant population (*1000/ha), 4) maximum soil rooting depth, 5)
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soil surface residues coverage (%), and 6) soil water balance of top 30 cm and below at planting,
respectively. In addition, the user needs to verify or overwrite if necessary, the default selection
for the soil texture class of the field, which is determined by using the field coordinate and
corresponding information from the SoilWeb (http://casoilresource.lawr.ucdavis.edu/gmap/)
powered by USDA SSURGO data (http://sdmdataaccess.nrcs.usda. gov/) (Beaudette and O’Geen,
2009). The soil texture determination algorithm automatically determines the dominant soil type
of the field and aggregates soil texture properties of each description layer to the top 30 cm and
below depth (Fig. 3). Each time after irrigation event, the user must register the irrigation date
and amount in the program in order to receive updated simulation results.

After clicking “Proceed”, the app will show outputs instantly, including the graph on
the right side of the page (Fig. 4). On the X-axis of the graph is the date with marks for crop
stages, and the left Y-axis is total soil available water, rainfall and irrigation record, while the
right Y-axis is crop water stress index (from 0 to 1). The current date is marked, followed by 10
days of predictions. The user can choose past one-week or since planting for the date on the
X-axis. On top of the screen is a message either in green or red: A recommendation for irrigation
in red if crop water stress is predicted for the next 10 days (Fig. 4, right), or non-irrigation
recommendation in green if no water stress is predicted for the next 10 days (Fig. 4, left). The
recommendation for irrigation also suggests considering possibilities of rainfall in the near future.
Below the graph, a summary table shows the currently available soil water balance, cumulative
water input (rain and irrigation) and crop water use (Fig. 5). Note that the irrigation record table
below the summary table is for users to register each irrigation date and amount. After the user
updates the irrigation records, the app will update all outputs instantly.

If the user clicks crop type on the left side bar of the page, the Google Map will show
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all fields the user has created in either of red or green color (Fig. 6). Icons in green are for fields
that have no water stress, while icons in red are for fields that are or will be under water stress
soon. This helps draw user’ attention to those fields that are already under or likely to develop
water stress and require irrigation. Field data entered in the previous years can be re-used for the
current year by simply clicking the “Corn fields” or “Soybean fields” under the Last years’ fields
tab on the field list at the home page. Select the field to update its information.

We used two datasets (2001 — 2005 in Mead and 2013 — 2014 in Lincoln, Nebraska) to
test the performance of CornSoyWater under a common soil type Sharpsburg. The results from
chapter 2 showed in Mead, CornSoyWater reduced irrigation pumping on average 93 mm
irrigation water during the season compared with conventional irrigation scheduling. Moreover,
the average root mean square error between simulated and measured total soil water amount
across the two locations was 29 mm, which was acceptable because it could be covered by one
round of irrigation of a center pivot. We promoted this app to producers since 2015 through a
series of field extension exhibits or educational events. Meanwhile, we keep promoting it to
previous SoyWater users who have had experiences with such kind of app. The registration of
the app has increased from previously 800 users from SoyWater to 1200 users up to now.

The user can access CornSoyWater account from any desktop, mobile devices with
internet access, although we still need to optimize the graphic visualization on mobile devices.
The back end of the app was written in PHP; the client side was written by HTML, JavaScript,
and CSS. A bootstrap theme was used as the template for CornSoyWater development
(https://wrapbootstrap.com/theme/material-admin-responsive-angularjs-WBO011H985).
Highcharts, a JavaScript library for charting, was used for plotting graphs. In addition, we used a

collection of open source libraries including as Apache Web Server, MySQL, and Google Map
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API as a framework to support map composition, storage of data, querying, and data

visualization.

Discussion

The irrigation app can facilitate the irrigation management for producers as it is able to
anticipate the potential occurrence of water stress in the field, thus recommending actions
accordingly. Meanwhile, during an irrigation season, which normally starts around silking in
Nebraska, producers are very busy on all farming activities and in multiple fields. It can happen
that producers miss certain fields which need an immediate irrigation when they are busy dealing
with other issues. CornSoyWater can help them better manage irrigation scheduling by
estimating what stage the crop is currently at for a given field, how much available water is in
the soil rooting zone, if the crop is likely to develop water stress soon, and if irrigation is needed
now. It will also dramatically save the time of producer on field scouting for water stress and
help them focus on fields that need their attention. Lastly, using CornSoyWater can reduce
irrigation pumping by optimizing the irrigation timing, which will also save pumping cost.
It is still challenging to use such app broadly because the adoption in agriculture area is usually
slow when it comes to new technologies. In addition, the use of smartphones in the field can be a
drag for first time users or users who are less technology savvy. Also, the cellular coverage and
quality in a rural area can be an issue sometimes. On the other hand, the onsite rainfall record is
critical for accurate irrigation scheduling and management. If a weather station has less accurate
rainfall record, the outputs from the app would deviate from the reality, which can mislead
irrigation management. Also, the management and maintenance of the app are also challenging

regarding funding and personnel. To solve this problem, we are currently working on moving the
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app to a commercial cloud along with other web services related to the app.

Conclusion
Better decision support is required to improve corn and soybean irrigation management
in Nebraska. We developed CornSoyWater, a web app for integrated corn and soybean irrigation
decision support. It provides a real-time estimation of soil water balance, crop stage, and water
stress with 10-day predictions. We believe it can make a difference in optimizing irrigation
timing, reducing irrigation pumping and cost, and reduce producers’ travel costs and field
scouting time. With CornSoyWater as an aid, producers would be more confident in making

smarter irrigation decisions for their corn and soybean fields.

Supplementary materials
CornSoyWater technical documentation — how to build an irrigation app from zero to

hero

The app
CornSoyWater runs on a web browser of desktops and mobile devices with internet
access. The back end of the app was written in PHP, while the client side was written by HTML,
JavaScript, and CSS. We used a collection of open source libraries including Apache Web Server,
MySQL, bootstrap theme, Highcharts, and Google Map API as a framework to support map

composition, storage of data, querying, and data visualization.
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Server setup

The server was installed with CentOS Linux 6.8 (https://wiki.centos.org/Download)
and managed by HPRCC. There are several references on how to set up a Linux server
(http://www.computernetworkingnotes.com/network-administrations/web-server.html). Basically,
you need to install Apache Web Server (https://www.youtube.com/watch?v=-q8Jj4aAWYw ;
http://www.wpbeginner.com/glossary/apache/), PHP ( http://youtu.be/7Zm9vLh70wI ), MySQL
(https://www.youtube.com/watch?v=uqaoGTnxqNw) on your service which depends on your
needs. Also, you many need SSL (Secure Sockets Layer) for securing your server
(http://info.ssl.com/article.aspx?id=10241). Note that different Linux operating systems might
vary depending on web server configuration. After configuration, your server would be able to

connect to the Internet.

Program structure

The basic idea is this app needs to (1) store user’s inputs including field geolocation
and crop management information and soil data, and (2) retrieve and store weather data from
designated sources. The app then uses the data to conduct the model simulation and present the
results to the user in a meaningful way. The structure of the app in Fig. 7 summarizes this logic.
The app uses different services including weather service, soil service, map service, and static
and dynamic files to provide inputs to the two crop models (corn and soybean). Using the crop
management data on users’ fields stored in the database, the two models take the inputs and
produce visualized outputs by a graph on the client side. The user interacts with the app by
updating the irrigation records or revising other field or crop information. Once updated, the app

will update the data in the database and re-run the models to produce updated outputs. In Fig. 7,
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29 6

the REST means the user on the client side can interact with the app by four actions, “get”, “put”,
“post”, and “delete”. For example, a user can click a field in the field list to select that field, and
when clicking another field, the previous one will be “put” down. The user can also choose to
“post” a new field, or “delete” a previous one (https://www.infoq.com/articles/rest-introduction).
In the next a couple of bullet points, the document will take apart each component of the app and

explains how the app uses these components. See components in Fig. 7.

Workflow

Fig. 8 shows the workflow of the app. Readers can navigate the page toward the
direction of the arrow pointed to a next page. Readers also can hit the back button to go back to
the previous web page of the app. The latest version of the app workflow may vary from Fig. 8
depending on the update of the app design. The workflow turned the abstraction of the app
structure to a concrete layout. Here is an example of walking through the Fig. 8 step by step, and
we are going to discuss in each step how CornSoyWater would involve the components in Fig. 7.

First, the start point at the Login Page (Fig. 8). After registering and activating a free
CornSoyWater account by clicking the activation link sent to his/her email, the user is ready to
log in. On the server side, the database also has been updated after registration. There are two
databases; one for user-specified data, and the other for weather data showed in Fig. 9. In the
user database, there are five tables: fields, login, crop input, irrigation record, and rainfall record.
The status column in the login table is also updated from “Not activated” to “activated” in the
database. Meanwhile, the user’s information is saved in the user table of the database, and his/her
field information is stored in the Field table in the same database.

Second, on the Home Page, the user can click Add a new field, or click an existing



96

field on the Field List (Fig. 2, Fig 7). The default view is the Google Map with existing fields
shown. When the user clicks Add a new field, the app will jump to the Add a new field page
which contains a new Google Map with a search box and a red marker (Fig. 2). The user will
choose to create either a corn or soybean field. After that, the user will need to find his/her field
on the Google Map by searching either street number, zip code, or coordinate. The Google Map
provides a geographic coordinate of a field which is stored in the database. The app will use the
coordinate as the starting point to calculate the distances from the field to each weather station in
the database to find the closest one. Note that the app uses a threshold of 32 km (20 miles)
beyond which a warning message will pop up to inform the user that the weather data source
may not be reliable for the field due to poor representation. In addition, the map shows a red
marker on the selected field. We suggest the user place the marker in the center of the field. We
use a soil type aggregation algorithm to retrieve the main soil type of the field area. We used
SoilWeb developed by UC Davis to support our soil aggregation algorithm (Beaudette and
O’Geen, 2009) (Fig. 7). SoilWeb is powered by USDA SSURGO data, one of the widely used
soil database in the United States (http://sdmdataaccess.nrcs.usda.gov/). After a user marks the
center of the field and proceeds to the next page, the app will generate a square with a side length
of 0.5 mile (0.8 km) and uses the marker as the center of the square. The purpose of this invisible
square is to capture the field area and calculate the dominant soil type of this field for model
simulation. Here is how the algorithm works: 1) the coordinate of the angles of the square is
passed to a web service of SoilWeb, and SoilWeb returns the soil types and the corresponding
areas of that soil type inside the square, respectively. The algorithm will take the dominant soil
type on the basis of its area size and ignore the other soil type; 2) for the dominant soil type, the

algorithm retrieves the silt and sand, the percentage for each soil depth (various by locations)
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respectively and aggregate them to two soil depths for corn (0-30, 30 to maximum rooting depth)
and one soil depth (0 to maximum rooting depth). For example, in Fig. 10 when the user creates

a corn field, there are three soil depths for this specific soil, the algorithm will grab the 0 — 13

and 13 — 30 cm, and the 30 — 74 and 74 — 150 cm (150 cm is maximum rooting depth the user set)
as two groups, then use 35*13/30 + 35*(30-13)/30 for the weighted clay percent at 0 — 30 soil
layer. And the algorithm uses the same manner to calculate weighted clay percent for 30 — 150
cm, and so on. Note that the sum of weighted clay, sand, and silt percent at 0 - 30 cm will be 100
percent, and so as the 30 — maximum rooting depth. 3) The final 0 — 30 cm and 30 cm —
maximum rooting depth percent of clay, sand, and silt will be passed to USDA soil triangle
algorithm(http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2 054167),
which will return the defined soil texture class for 0 - 30 cm and 30 cm - maximum rooting depth,
respectively. Those two values will be passed to the next web page as the default soil texture
settings (Fig. 3). After creating the field, it will be shown on the Google Map of Home page with
color icons to indicate crop types (corn or soybean) and water stress status (green no stress, red
has stress) (Fig. 6). The map services in Fig. 7 mean the Google Map provides service in the Add
field information page (Fig. 2).

Third, after the user clicks the Proceed button on the Add a new field page, the app will
jump to the next page and asks the user to provide the field specific crop management
information (Fig. 3). The required information includes hybrid relative maturity (days), 2) date of
planting, 3) plant population (*1000/ha), 4) maximum soil rooting depth, 5) soil surface residues
coverage (%), and 6) soil water balance of top 30 cm and below at planting, respectively. All the
information is stored in the user database after finishing all the forms. Note that the user can

choose to overwrite the auto-loaded soil texture by his/her own choice. We made a design change
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to attach the irrigation page on the result page in the new version of the app, but this change is
subject to the designer. It makes more sense to have irrigation page follow cropping management
information page in case the user has already started to irrigate and the updated irrigation
information will provide more accurate results.

Fourth, between Add a new field page (and irrigation page) and the Crop projection
page for selected field, the app calls the weather database for data from the selected weather
station. The weather data comes from two sources. One is from AWDN hosted by HPRCC
(http://www.hprcc.unl.edu/awdn.php), which provides the up-to-yesterday daily weather data and
historical average weather data to our weather database (Fig. 9). Another source is apixu
(https://www.apixu.com/) which provides a 10-day weather forecast. We merge the data from
those two sources to meet our model simulation requirement. For the AWDN weather data, we
fetch the historical weather data for each available year from all activated AWDN weather
stations and stored them in our weather database under wdarane table (Fig.7, Fig. 9). We also
calculate historical average weather data for each weather station, respectively, and store them
under normdatane table. When the historical weather data is less than 20 years, we flag the
normdatane table for the purpose of quality of the historical average weather data. The historical
weather data is only used by soybean simulation and serves as a backup when the apixu weather
forecast is not available. Every night at 12 am, the HPRCC updates the previous date’s weather
data, and pushes the new record to our server and stores the data in a text file (dynamic file in
Fig. 7). The app grabs the new weather record and updates the weather database. A similar
mechanism is applied to update the weather data from Michigan, but instead of grabbings the
new data from the text file, we wrote a script to grab it from their website directly. Meanwhile,

we use the web API provided by apixu to retrieve 10 days forecasting weather data (including
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today because AWDN doesn’t provide today’s data) and store them in the same weather database.
By passing the coordinates of the respective weather stations, we retrieve the apixu weather
forecasting data of those coordinates. Note that apixu does not provide reference ET, which is
pre-calculated by HPRCC and included in the AWDN weather data source. Thus, we wrote a
script to calculate it using the forecasted weather data. The ET calculation requires Tmax, Tmin,
relative humidity, wind speed, and solar radiation. Because apixu does not provide solar radiation
forecast, we use the average of last three days’ solar radiation from the corresponding AWDN
weather station to calculate the apixu actual ET for the next 10 days. Whenever AWDN updates
the yesterdays’ weather data, it will be automatically stored in the weather database, and the
weather data from the apixu forecasting weather data at the same date is replaced. We also wrote
quality control procedure to screen the weather stations data from AWDN. Sometimes, the
weather stations from AWDN may be down, so we need to know if the station is discontinuous
or gives us null data when we retrieve weather data. When this happen, the app will use the
second nearest weather station for model simulation instead.

Fifth, after getting the weather data, the app will gather the crop management data
including soil type and weather data and send it to the model for the simulation (Fig. 7). If the
crop is corn, the corn model is called. The corn model uses the Hybrid-Maize as the “engine”.
The Hybrid-Maize model is written in Delphi. In order to efficiently run the model without
rewriting the model in PHP due to the complexity, we compiled the source code to a binary
executable file. The source code was compiled by Lazarus IDE v.1.2.2
(http://www.lazarus-ide.org/) running under Ubuntu 14.04 LTS Linux environment at 64 bit
(https://www.ubuntu.com/). By compiling the source code, the model will be able to run under

Linux server environment seamlessly. Here are several steps to show how to convert the source
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code to a binary executable file:

(6/18/2015)

1.

Nownk

0

11.
12.

13.

14.
15.

16.

17

Turn on Ubuntu Linux 64bit system on the laptop.
Use Firefox Brower to access the dropbox link from the source and download the whole CornWater
project as a .zip file.
Move the .zip file to the desktop and put it in a new created fold. Name the fold by the binary version and
what problem has been resolved in this version.
Unzip this file.
Open Lazarus in Linux.
Open the new folder. Select the file type all type.
Open $Binary.drp. The Lazarus will ask you “The file... seems be a program. Lose current program and
create a new program, click “yes”. You want to click Yes.
Choose application, click ok.
At the top bar of Lazarus, click the “play” button.
. Click ok when “Execution stop”. You will see another message box showed Project “$Binary”
successfully built.
Go back to the new folder, find the generated binary file named “$Binary”.
In the new folder in desktop, test it by setting up a field name in userlist.txt. For example in userlist.txt,
write userA/
This will allow the binary read userA.inp and produce results in userA.out.
Backup old binary in server hprcc-agron0 at a home directory ~./CornWaterV 5Linux32bit
Replace the old binary CornWater by the new binary CornWater by copy and paste. If the server did not
allow, delete the old binary on server and copy paste the new binary in the same location as the old one
located.
Change the properties of the binary ConrWater to 755. Basically, for all check boxes only group write and
other write are unchecked, other boxes are checked.
. Test if the output is correct by running CornSoyWater web or mobile app.

There are two parameter files as statistic files (parameter.hmf and parameter2.hmf) (Fig. 7).

These two files contain parameters for corn model simulation. There is another text file called

userlist.txt. Whenever the page jumps to Crop projection page for selected field page (Fig. 8), the

app will pass a unique field id to create a string in the userlist.txt file. Meanwhile, the cropping

management information is written in a field id.in file through the user database and the corn

model will read that file. The model reads the specific weather data for that field from a “.wth”

file generated by the app through the weather database. After the simulation has been completed,

the outputs are written in a field id.out file. The Crop projection page for selected field page then

displays the results accordingly. If the user updates the irrigation form under the results and save

the

updates, the simulation will re-run and new results will be plotted on the page. If the crop is
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soybean, the soybean model will be called. Because we modified the Soy Water code, the

soybean model can directly retrieve weather data from the weather database and produce results.

Note that both corn and soybean model use a dynamic root growth mechanism to define the total

available soil water. It means if the root does not reach a certain soil depth yet, the soil water

beneath that depth is not accessible by the crop. This is different from the mechanism used by

Hybrid-Maize model which defines the total available soil water to the maximum rooting depth

starting from the planting date. This modification lowered the risk for overestimation of total

available soil water. Here is the algorithm of soybean model dynamic rooting depth:

(6/22/2016)

Unit: depth in inch, temperature in F

At initiation of simulation, calculate root growth rate (RGR) from user-set maximum rooting depth
(maxRD, in inch):

RGR

=maxRD /1422

Calculation scheme for Day 1
Calculate GDD (growing degree days) from temperature of that day:

1.

Calculate mean temperature (Tmean) from the maximum (Tmax) and minimum temperature
(Tmin): Tmean = (Tmax + Tmin) /2

Calculate daily thermal time (DTT): DTT = Tmean — 50. If DTT > 27 then DTT =27, else it DTT
<0 then DTT = 0.

Calculate GDD up to today: GDD = GDD + DTT. Note that GDD must be set to 0 at initiation
of simulation.

2. Calculate root depth (RD, inch): RD = GDD * RGR. If RD < 12 inches then RD = 12 inches; if RD >
maxRD then RD = maxRD
3. Calculate Threshold for irrigation: Threshold = RD * (FC - PWP) * 0.5
4. Calculate water content of the root depth (thetaRD) at end of the day:
e thetaRD = (thetaRD*RD + WaterInput — ET) / RD;
if thetaRD > FC, then:
Overflow = (thetaRD — FC)*RD;
thetaRD = FC;
5. If overflow > 0, then calculate water content of below root depth (thetaBRD) at end of the day:
o thetaBRD = [thetaRD *(maxRD — RD) + Overflow]/ (maxRD — RD); if thetaBRD > FC, then
thetaBRD = FC
6. Calculate total available water (TAW) in the root depth: TAW = RD *( thetaRD — PWP)
7. Plot TAW and Threshold, both in inch
Abbreviations:

RD: root depth, inch

RGR: root growth rate, inches/GDD
GDD: growing degree day

DTT: daily thermal time
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Tmax, Tmin, Tmean: daily maximum, minimum, and mean temperature, respectively
FC: field capacity (constant)

PWP: permanent wilting point (constant)

thetaRD: water content (in fraction) of root depth

thetaBRD: water content (in fraction) of below root depth

ET: evapotranspiration (i.c., crop water use)

Sixth, after seeing the results, if the user clicks the Field list and goes back to the home
page, he/she can see the up-to-date stress status of the fields on the Google Map from the
auto-simulation that is conducted every morning at 6 am Central Time (Fig. 6). The icon pictures
(corn/soybean) and colors (green/red) indicate the crop type and whether the crop is or will
potentially experience water stress in the next 10 days, respectively.

Seventh, the user may have created a field or multiple fields in the CornSoyWater
account in the previous years, if he/she wants to use the old fields information in a new year,
he/she can simply click the “Corn fields” or “Soybean fields” under the last years’ fields tab on
the field list at the home page and select the field he/she which want to change and update the
field information. The app will update the user database so the next time when he/she visit this

field, a current year simulation would be presented.

Future Recommendations
The improvement of the app design in the next iterations could be:

1) Add parallel computation for the models. Because we have not had a large amount of
simulation requests at a short period of time, we do not know if the binary executable file
would be able to handle hundreds of simulation calls at the same time. Add a parallel
computing process or rewrite the source code of model into a web script language could

resolve this potential issue.
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4)

5)

6)

7)

8)

9)
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Move the server to a commercial cloud service. The Amazon AWS or Digital Ocean would
be a good choice as the maintenance efforts of the server would be minimized.
Rewrite the code in an MVC fashion and use API if needed. The old code was disorganized.
Newly organized app structure and coding fashion are necessary.

Move the irrigation page (form) in between Add a new field page and Crop projection page
for selected field (Fig. 8). But also keep the irrigation form under the results graph.
Add new feature such as a shapefile layer for the field area. In that case, the user can define
their own field area.
Add parallel simulations for different soil types for a single field. For each soil type in the
field, the model should be able to simulate separately by the soil types.
Add user input precipitation option. Thus a user can input onsite precipitation by the rain
gauge measurement.
Add printout button and email option. Thus a user can print out the results page, or receive a
notification email for the stress fields in the morning.
Add “Try it” option. Thus a user can try the app without registering an account. This new

feature can encourage a first time user to try the app out.
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location of the user.
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Fig. 3 Adding a new corn field page in CornSoyWater. A user will fill out the crop management
information on this page, including 1) hybrid relative maturity (in days), 2) date of planting, 3)
plant population (*1000/ha), 4) maximum soil rooting depth, 5) soil surface residues coverage
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Fig. 4 Left: when the app predicted no water stress, the available soil water (solid yellow line) is

above the threshold line (red dash line), the notification message shows green, and no irrigation
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is recommended. Right: when the app predicted water stress, the available soil water is below the
threshold line, the notification message shows red and irrigation is recommended if no

significant rainfall occurs.

Results Summary.

33 Current available water balance down to the maximum soil rooting
depth (inch)

9.4 Initial available water down to the maximum soil rooting depth at
planting (inch)

11.0  Total rainfall amount since planting (inch)
9.0 Total irrigation amount (inch)
20.0 Water consumption (i.e., total crop ET) since planting (inch)

6.0 Water losses, including canopy interception and drain below the
maximum soil rooting depth (inch)

Fig. 5 The summary table of the output graph shows current available water balance down to
maximum soil rooting depth, initial water down to the maximum soil rooting depth at planting,
total rainfall amount since planting, total irrigation amount, water consumption such as ET since
planting, water losses, including canopy interception and drain below the maximum soil rooting

depth. All unit are in inches.



109

<« C # [ hprec-agronO.unl.edu. watet/public_html/profile phy Q
£ Fovorte  BY HASY1 Sutiness Con.. 30 G rwms [ OO wecty (B SNA s CND BY Map 2 Westher QD cragetet B AgroDept = [ Othver book

CORMSOVWATER A WeLCOME HAISHUN B LOGOUT

Mo of an heazs
Use navigation bar on left 10 add a new field, view Iist of existing fields of 10 delete existng fields

®

459 e flel

Cwarte foatn

= crow s Reloe

No need for
irrigation
% Need for
irrigation

Fig. 6 Field map showing all fields of a user using icons of corn and soybean to indicate. Icons
in green mean no water stress predicted while icons in red indicate water stress or will likely

experience water stress in the next 10 days if there is no significant rainfall occurs.
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Google Map API, SoilWeb, weather data from AWDN and MAWN. With the statics and dynamic
fields in our server and our user database, the model will simulate and generate outputs. The
output will be showed on the client side. The arrow indicates the direction of flow of the

information between components. REST, representational state transfer.
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Update field page
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/ edit field irrigation
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Click the home button on any pr
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Corn/Soy
Fields Page
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Click the need help button on any user gets from page to
page page on the mobile
website.
User *Hitting the back arrow on any screen will
Settings take the user to the previous page.

Click the settings button on any
page

Fig. 8 The workflow of CornSoyWater, starting Login page. The arrow indicates the direction of

flow of the information between components. The workflow is subject to change.



Weather database

112

normdatane
idAWDN wdatane
date idAWDN.
doy, date.
tMax tMax weatherstations
thin L)
rHumidity rHumidey stnName
“solfemp | solTemp stolat
windSpeed wndSpeed stnlong
solarRad solrRad stnStartDate
prec prec stnEndDate
et et stnElev
newAWDN ha rowData stnStatus
dataSource archal rowDataAccuracy v stsState
rowDataOperaton stnDataSource
\ 1 7
crop_input
unigueFieldid int(10) UN PK Fields irrigationrecords
nt(10) UN PK _uniqueFieldld | int{10) Ut _idIrrigationRecords | int(10) UN Al PK
dateOfPlanting date membersid _uniqueFieldld |
hybRelMat varchar(3) ) UN PK
P float UN _rainGaugeNumber ) | datelrrigation date
soilRootingDepth nt(2) UN fieldName varchar(30) amountlrrigation float
soilSurfaceResidues | int(3) UN 5_ latlong varchar(50)
bulkDensity flo wthStnDist float UN
soilTextureTopSoil | varchar(20! fieldCreationDate date e
soilT i varchar(20 iu:'l:entCrop varchar(5) nt(1D) PK
TopSoil | varchar(20) tinyint(1) < Jate PK
bSoil | varchar(20’ daysToWaterStress tmyn‘t\l)‘ amountRainfal Bt
crop varchar(5) stressMessage it ) membersid int(10) UN PK
plantingYear year(4) lastSim datetime S
lastUpdate datetime
login
_email
password Vi
firstName varchar(45)
lastName varchar(45)
activation varchar(10)
status varchar(15)
phone varchar({20)
zipcode varchar(10)
county varchar(30)
address varchar(100)
state varchar(15)
lastLogin date
accCreationDate date

User database

Fig. 9 The databases of the server for hosting CornSoyWater. The top box is the weather database,
and the bottom box is user databases. The weather database includes normdatane: historical
average weather data, wdatane: AWDN and MAWN weather data, apixu weather data, weather
stations: weather station information. The user database includes crop input: the crop
information for each unique fields users creates, Fields: the field information, irrigation records:

irrigation records for each field, rainfall records: rainfall records for each field, login: the login

information for each user.
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Right, the soil texture of one soil type at different soil depths.
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Chapter S

Scientific Summary and Discussion, and Ispagtech Business Plan

Scientific Summary

With the fast improvement of internet coverage and speed worldwide, crop model and
web based apps like CornWater and CornSoyWater can remotely predict crop development, soil
water balance in the field and possible water stress using real-time weather data and increasingly
reliable weather forecast.

This study showed that with user specified crop management information and major
soil properties, the irrigation apps could estimate overall daily soil water balance of the entire
rooting depth and predict future crop water stress reasonably well for the purpose of irrigation
scheduling. Although the performance of the maize model in CornSoyWater may not be as
accurate as we desired for a specific soil depth, we suspect the cause of the inaccuracy was due
to the use of the tipping bucket method for the water redistribution process. Modifying the
algorithm by the Richards equation, which is a better representation of unsaturated soil water
movement, is likely to improve the model performance.

Furthermore, we tested other components of the model, including crop growth and
development. We found the model simulated maize phenology, LAI, and yield reasonably well
under different irrigation conditions in Nebraska. However, the model has the tendency of
predicting crop stage earlier, and underestimating maize grain yield for the two years’ experiment.
Deficit irrigation and rainfed conditions have less influence on simulation accuracy for soil water
balance, but more influence on biomass and yield simulations. Climate difference from one year

to another had more effect on simulation quality than water input.
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A series of university extension exhibits and marketing promotion helped the apps
reach 1200 registered users. As a prototype, we achieved the app’s capability of providing a near
real-time estimation, with 10-day predictions, of soil water balance, crop stage, water stress, and
recommendation for timely irrigation to avoid possible crop water stress. Moreover, we are
satisfied with the performance of the app and concluded that it has its market potential.
Producers would be more confident in making irrigation decisions for their corn and/or soybean

fields if they use this app.

Scientific discussion

If we want to develop a crop model app that not only is guided by scientific principles
but also meets industry production demand, we need to come out with creative approaches to
combine scientific sophistication with industry efficiency. For example, if the purpose of the
irrigation app is primarily for irrigation scheduling, the accuracy of simulating soil water content
for the top 0-60 cm soil may be critical. Currently, we used the tipping bucket method for water
recharging process which may not as precise as when using the Richards equation to describe
water movement. However, due to the complexity involved in Richards equation for more input
information from users (for example, in the case of RZWQM2 model) compared with a simple
model, one alternative approach is to modify the tipping bucket method to allow partial water
input to move to the lower soil layer before upper soil layer reaches field capacity. In this case,
the water movement in the soil profile will be closer to reality. Moreover, this approach will
avoid the burden of asking more information from users.

The performance of a crop model app is the key to determining whether the app will

be used by the broad audience. As the crop growth and biomass simulation interacts with soil
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water balance, the quality of model on simulating crop growth and biomass is important.
Although we found the climate difference in the two years in Lincoln had effects on the
simulation quality on crop growth and biomass, the performance variation in different years can
be caused by other abiotic factors which we may not be aware of. In future studies, the key of the
model validation and calibration under different environmental conditions should focus on
finding the real causes of errors in the model components. For example, one of the key factors is
GDD, which affects the crop growth duration and crop stage. If the model cannot predict
precisely how long the crop is going to grow, other intermediate results such as biomass
accumulation in each organ will be off the target.

One of the benefits of solely relying on crop model apps for agricultural practices is
cost effective. However, for agricultural practices that need high precision, sensors are more
reliable for many tasks. A combination of sensors with crop models may be an alternative
solution for balancing cost and precision requirements. For example, when soil moisture sensors
are installed in the field, the representation of the sensor measurements is limited to the
installation point. Although the measurement can be accurate, when it comes to scaling up the
service of sensors to a larger area, the cost of sensor and installation can become a serious
concern. On the other hand, although the accuracy of the crop model still needs to be improved,
the models can be a good supplement to sensors when using them side by side with the model’s
capability of scaling up and forecasting.

The remaining critical issues are how we can deliver such an app to more producers’
hands and increase adoption. As described in the introductory chapter, the answer is utilizing
startups to bridge the gap between such an app and its target users. Following is the business plan

on how the startup will provide the answer.



117

Ispagtech Business Plan

Executive Summary
Product & Service

Ispagtech is a Business-to-Business (B2B) data analytics company that provides forecasting of
water stress, crop growth, grain yield, and nitrogen requirement and leaching via REST
application program interface (API) in the JSON format for agricultural decision support
platforms. By leveraging a deep understanding of crop modeling science, Ispagtech provides
customized real-time forecasting analytics down to the acre scale. Using machine learning
technology, Ispagtech enables self-improving forecasting service through an accumulation of a

customer’s field data.

Competitive Edge
At large scale, there are more than 20+ AgTech companies in the market today that provide
integrated agricultural decision support platforms covering 90% of US crop production land.
Most of them provide current and historical field data service, but few provide forecasting
analysis for their customers. Such a company which uses Ispagtech API service can create
business insight on risk management and resource optimization for their end users. Ispagtech can
scale up in the market instantly by partnering with individual AgTech companies with accessing
user basis. By analyzing a company’s customers’ ground truth data, Ispagtech can keep

improving its forecasting service accuracy by using machine learning technology.

Market Opportunity
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Ispagtech’s addressable market includes decision support technology business that utilizes
precision agriculture technologies, enterprise resource planning technologies, smart sensors,
weather, irrigation and water technologies and app developers. Most of those technologies have
an engineering team or engineers themselves that can easily implement Ispagtech API service
into their platforms. The average annual investment in decision support technology companies is
246 million with an increase every year since 2014. The platforms provided by these enterprises
will collect, connect, and manage a disproportionally large amount of agricultural data in the
next decade compared with all the agronomic data collected before in the world. Ispagtech helps

those companies to make sense of those data by providing API forecasting analytics.

Sale and Distribution Strategy
Ispagtech sells their API service solely on the online channel. Ispagtech uses Facebook ads and
different social media to advertise their product. Ispagtech offers different annual premium plans
of $0, $60, $180 for developers, and for the enterprise price Ispagtech will charge $1,000 and

$0.01 per call of the APIL.

Sales Growth and Revenue Projections
Ispagtech expects an average $16,000 sales with a profit of $6,200 which can be used for
maintenance of server and Hadoop and Spark for machine learning and 3scale for API
management in the second year. We expect 50% annual growth on sales with $11,000 net profit
from year 3, $23,000 in year 4, and $33,000 in year 5. In all, a 70% annual growth in net profit is

expected after the second year.
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Fig. 1. Profit and cost projection of Ispagtech in the first five years.

The Management Team
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James Han (Founder, CEO, CTO), 4 years’ data science, modeling, and agriculture production

experience. Haishun Yang (Advisor, Board of Director), 27 years’ crop modeling and agriculture

production experience.

The Exit Strategy

Sell to potential partners, AgTech companies, irrigation companies, and smart agricultural device

companies. Provide UNL free access and use for educational purposes.
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Mission & Vision
Mission Statement
Ispagtech’s mission is to help companies in providing ultimate forecasting service for their crop

producers.

Core Purpose
Ispagtech’s core purpose is by answering the question of how the plant will grow in different
environments on earth; Ispagtech will help Elon Musk to make human species a multi colony

species by inhabiting Mars and growing crops on Mars.

Core values
“Doing the right thing is always the right thing. - Gary Vaynerchuk”.
“Ideas are shit, execution is the game. - Gary Vaynerchuk”

“Rule # 1, don’t lose; rule # 2, see rule # 1. - Warren Buffett”

Product and Service Description

Overview of product and service
Ispagtech is a Business-to-Business (B2B) data analytics company that provides forecasting of
water stress, crop growth, grain yield, and nitrogen requirement and leaching via REST API in
the JSON format for agricultural decision support platforms. Ispagtech focuses on AgTech

companies instead of individual crop producers for the purpose of scalability in the market.
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Ispagtech provides REST API services in JSON format to companies as leverage in exchange for
analyzing customer’s field data via either companies’ agricultural decision support platforms or
data box. Use Open Ag Data Alliance (OADA) JSON format to import field data from
companies, Ispagtech provides continuous improvement of forecasting accuracy of the API
service by machine learning algorithm.

Ispagtech API service delivers real-time forecasting analysis, with which companies can
implement this service seamlessly in their platform portfolio by calling out the API through
unique secure authentication. Ispagtech makes the implementation process so easy that any
software engineer can finish the task within hours.

Initial, the quality of the API forecasting for specific customers can be compared with the
benchmark data provided by the end customers (e.g. crop producers, crop consultants, insurance
agents, research institute, government, etc.) of the company through the platforms or data box.
Ispagtech establishes partnerships with companies and gives a further in-depth forecasting
uncertainty qualification by comparing forecasting with ground truth data from companies’ end
users. Ispagtech will use a secure pipeline for accessing, analyzing, and sending a report back to
the companies on the cloud via an OADA JSON format and update the improved API for the
companies. With more end users of companies and more ground truth data, Ispagtech will be
able to scale up even further and create multiple forecasting data layers mapping through the
majority of U.S. crop production land based on user fields coverage. The expected data layers
include national soil water balance, crop stress risk, nitrogen requirement and leaching, and grain
yield potential. The advantage of this scaling up is the benefit of the volume of companies’
existing users with the low cost of marketing.

The main direction of Ispagtech is to transform from solely providing API as a service to a big
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data cloud computing company. By its reliable forecasting capability on crop production,
Ispagtech uses initial API service as a gateway drug to attract partnership specifically with
AgTech companies who are willing to explore their agricultural data. However, the key is to
develop a sustainable pipeline to keep improving Ispagtech’s service by machine learning. The
quality of Ispagtech API service will keep improving by massive ground truth data feed to the
deep learning optimization algorithm (Fig. 2). Along the way, Ispagtech will be able to
accurately predict how any crop will respond to various abiotic components within a given time
frame for a given crop in a given region. This keeps improving the competitive edge for

Ispagtech and creating a branding effect in the market.

Andrew Ng, Chief Scientist at Baidu

Why deep learning

Deep learning

)
o
o
@©
£
S
=
o
o

Amount of data

How do data science techniques scale with amount of data?
Andrew Ng

Fig. 2. Baidu chief scientist Andrew Ng showed deep learning (one of the many machine learning

algorithms) would outperform traditional algorithm by feeding it more dada.

Ispagtech strategy for a winnable API service is to analyze low cost and massive volume of data
by existing scientific algorithms and bringing the analysis to a large scale. This requires

collaboration with university research teams which Ispagtech favors. Usually, the people who
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know how to use the data from the academic sector are not involved with the industry. By
collaboration with university research teams, Ispagtech will create a win-win situation by
actualizing the existing algorithms of University and providing the university with more business
opportunities.

The current algorithm is restricted by the area such as Nebraska and fragments of the nearby
states. Ispagtech will modify the algorithm and make it usable in the entire U.S. (Fig. 3) without

decreasing the current forecasting accuracy.
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Fig. 3. Left: coverage of current UNL algorithm indicated by dots. Right: coverage of Ispagtech

modified algorithm indicated by color areas. The red polygon area indicates the UNL algorithm

coverage.

Because of the expanded coverage where Ispagtech API service can be applied, the geographic
limitation for Ispagtech’s potential customers is removed. Below are the examples of potential

users, desired actions, and rewards.
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Table 1. Potential users of the service, what the potential users want to do with their current

products but have not been able to do so, and what are the potential rewards by using Ispagtech

service.

Potential company Potential desired actions Potential rewards
Enterprise resource Provide forecasting analytics before New portfolio on

planning companies starting farming practice facilitating

decision-making process

Weather data companies Use of their data, partnership Share of revenue

Irrigation companies Not just forecasting of weather, but Provide forecasting water
forecasting water, precision irrigation guide and stress
VG D oG B 098 Develop ag-related apps Provide source for the app

development, revenue

After a company implements Ispagtech API service, it can open this service through its
platform to users with premium package. The API service will provide forecasting of what will
happen in the field for the next 7 days. Furthermore, if those happened, what it will cause for end
season will be predicted.

Water related:
e Recommendation message whether irrigate or not based on water stress
e [rrigation amount
e  Water stress
e Soil water balance
e Todays’ available soil water balance
e Water consumption since planting

e Water losses by drainage and canopy interception
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Crop related
e Crop stage

e In season potential grain yield

Nitrogen related
e In-season nitrogen needed

e Potential nitrogen leaching

Weather related
e Maximum and Minimum temperature
e Relative humidity
e Wind speed
e Solar radiation

e ET

Ispagtech API service gives quantified forecasting results for each of the items listed above and
provides a likelihood analysis from the most possible to the least possible scenarios so the end
users can take action accordingly. For the advanced feature, Ispagtech API can also provide

historical analysis on demand.

Problems, Cause, Solutions, and Benefits
The main problems and causes in the current market, and Ispagtech solutions are presented

below (Table 2):

Table 2. Problems, causes, solutions, and benefits of the market.
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Problems Causes

Companies are not aware of the existence of So far there is few crop related forecasting

available API in the market
Not clear ideas of the ROI of a forecasting

service

Skeptical of the reliability of such kind of API

and potential risk

New AgTech companies want to develop

such technology by themselves

Not widely used

Face climate change and global warming

API exists in market

Most agriculture-related forecasting service is
for stock/bond price or weather, but this API
service is new

Never had such product before in the market

Much investment of money and time, but

unknown return due to lack of core
technology available: crop modeling, and
quality control

Old product from academic sectors which is
not scalable

Warmer temperature and more frequent
extreme climate affect the traditional crop

growth pattern and make it more difficult to

predict

Table 2 (continued). Problems, causes, solutions, and benefits of the market.

Solution: API service
Ispagtech directly markets the API to the

companies

Benefits

Add values to the current existing platforms
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Create new business opportunities for Help companies’ end users optimize resource

companies such as weather companies allocation, improve risk management, and
reduce energy costs

We have already run test on the reliability The more data the company provides us, the

Results: reliable more accurate the API will be

Risk: can be qualified

Provide API directly Reduce the hassle and investment by bringing
simplicity
Ispagtech API is built for scale Fill the gap between precision ag monitors

(Micro) and national drought forecasting
(Macro) for the companies
Predict how crop will be affected by warmer Optimize farming resources allocation at the

temperature and less water field

Product and Service Advantages
¢ Quantify uncertainties, give users piece of mind
e Fill the gap in forecasting capability of ag decision support technology
e Scalable up and down easily
e Precise to a quarter section field
e Real-time forecasting
e (reate new business leads for interrelated AgTech and Agribusiness

e Reduce the cost of R&D for Ispagtech customers
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Industry Analysis

Industry Overview
The investment in agtech startup has started to boom since 2014. According to the
AgFunderNews, in the first half of 2016, there was 1.6 billion investment in the AgTech sector
with 307 deals
(https://research.agfunder.com/2016/AgFunder-Agtech-Investing-Report-Midyear-2016.pdf).
Although the total investment of ag startups pulled back after 2015, the total trend of investment
showed an increase from 2014 to 2016. Within the total investment in 2016, precision ag startups
raised 333 million at first half year, and 47% of them involved software, irrigation, and weather
technologies.
The main reasons of the booming of AgTech investment are that the storage of data (for
examples, satellite and drone imagery, weather data, sensors measurement, etc.) has become
cheaper, and computational capability of the computer is getting better. Nowadays, the data
generated daily is about 90 years of high-definition video (Fig. 4)
(http.//www.northeastern.edu/levelblog/2016/05/13/how-much-data-produced-every-day/). In the

next 10 years or so, this volume could be the daily collected agricultural data.
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How Much Data is Produced
Every Day?<2

2.5 Exabytes are
are produced

every day

Which is equivalent to:
J 530.000.000 millions songs
M 150.000.000 iPhones
]:]_ 5 million laptops
=] 250,000 Libraries of Congress
(] <90 years of HD Video

= LEVEL

Fig. 4. How Much Data is Produced Every Day in 2016?

However, how to use massive data to forecast the future and create business leads in the
agriculture sectors becomes a new challenge. In fact, this forecasting analytics has existed and
has been used in the stock market for decades due to its high ROL In contrast, the same
technology has not been used in agriculture because of the cost of data collection in the past.
With the increasing volume of agricultural data and the computational ability of cloud computing,
to analyze agricultural big data by advanced computer algorithm to create business opportunities

will be the next agricultural revolution.

Cloud Computing Industry
Forbs reported the worldwide cloud computing market grew 28% to $110 billion in revenues in

2015. In 2016, the spending on public cloud Infrastructure as a Service (IaaS) hardware and
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software is forecast to reach $38 billion, and will grow to $173 billion in 2026
(http://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-
and-market-estimates-2016/#349377774b07). The public cloud laaS regards as cloud service
when you buy a piece of server in a cloud computing environment that is shared with a number
of other clients or tenants
(http://www.onlinetech.com/resources/references/public-vs-private-cloud-computing). IDC
predicted Software as a Service (SaaS) would remain the dominant cloud computing type,
capturing more than 115 billion of all public cloud spending through most of the forecast

period. SaaS provides the point of access to software running on servers, so-called cloud service
(https://www.computenext.com/blog/when-to-use-saas-paas-and-iaas/). A company like
Ispagtech provides application program interface as a service (APlaaS), is one type of cloud
service. API can be imagined as the service given by a waiter who directly interacts with a
customer (an end user) who wants to order a dish in a restaurant and the waiter pass the order to
the kitchen (the algorithm on the cloud).

SaaS is a main potential client of API service, because the essential of SaaS is to build cloud
service for clients based on different API services. For example, smaller AgTech companies have
certain resource but do not have all the resources to develop applications and web interfaces
from scratch. They have the ideas and the capabilities to develop graphical entry points for the
front-end of the website or program, but are a lack of knowledge of the science theory to support
the new programs at the back-end. This is the time when APIaaS start to fill this gap.
(https://cloudcomputingvirtualization.wordpress.com/2012/12/24/api-as-a-service-apiaas/). One
success example of APIaaS is Moz.com which individuals or companies use their search engine

ranking algorithms to build their own applications, programs or software, and they have to pay
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licensing fees per the number of calls to the hosted API.

Industry Trends and Key Factors
In the AgTech sectors from 2014 to the first half of 2016, the total investment on precision ag
was 1.27 billion. Three main categories took 85% of the total investment, which are drone
imagery and platform service, Ag Enterprise Resource Planning (ERP) platform, and smart
sensors. Table 3 shows the companies’ name list. Among them, drone-related precision ag is
listed as the number one, followed by ERP and the last is smart sensors. Note that there is some
crossover between drone imagery & service and Ag ERP, and between Ag ERP and smart

S€Nsors.

Table 3. List of companies in the three top precision Aglech categories. Note the table only
contains precision businesses with annual revenue more than 10 million, or received equivalent
pre-seed, serials A, B, C, and D run funds which are close to this number, or have equivalent

assets. Hundreds of startups in those three categories are not listed.

Drone, Imagery & Platform

Service

Ag Enterprise Resource

Planning Platform

Smart Sensors & Irrigation

Platform

3DR, Skycatch, Mavrx inc,
DroneDeploy, Precision
Hawk, AirMap, Sentera, DJI,
Parrot, Resson, Slantrange,

Delair, Prioria Robotics,

FarmLink, FieldView,
Farmlogs, AgriCharts,
Farmers Business Network,
Farmers Edge, ClearAg,

Cropio, OnFarm, Agworld,

CropX, BaseStation3,
FieldNET, John Deere Field

Connect, Hortau, HydroBio
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Airwave, Xaircraft, Kespry, Granular, Conservis,

Cyphy Works, Planet, Orbital | Agrimap, Farmerp,

Insight, Airphrame, Swiftnav, | CropTrack, Fairport, Cengea,
Intelescope Solutions, Pulse aWhere

Aerospace, Ehang

With the trend of SaaS product getting popular, new AgTech and some traditional agricultural

companies are going to focus on cloud computing. Ispagtech must develop innovative solutions

within the three categories above in order to establish itself at the forefront of APlaaS and

cloud-based consolidation in agricultural business:

Build easy to implement and cost-effective API front-end and back-end.
Use API management platform to track leads, such as 3scale or apigee.
Ensure security for API back-end

API service enriches and emphasizes on the mobile end for developers

Good customer service and technical support

Competitive Analysis

Competitive Overview

So far, the direct competitors are smart sensors & irrigation platform. Below is the comparison

table.



Table 4. Direct Competitors of Ispagtech

Owner/CEO

Year founded

Headquarter

Website

Type of Entity

Product

Overview

Key Feature

Pricing

Ispagtech

James Han

2017

Lincoln, NE

Ispagtech.com

Private

API service

Forecast crop

water stress

$0, $60, $180 for

aWhere

John Corbett

1997

Broomfield,

CO

aWhere.com

Private

Agricultural
Intelligence,

API

Use weather
data to
provide
Agricultural

Intelligence

Unknown

(8 1)1).¢

Isaac

Bentwich

2013

San
Francisco

Bay Area

Cropx.com

Private

Smart
moisture
sensor with

platform

Send
moisture
reading to

phone

$275, $600,

Lindsay

Rick Parod

1950

Omaha, NE

Lindsay.com

Private

FieldNET,
weather station,

moisture sensor

Send moisture
reading to

PC/phone

Come with the
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Valley

Len Adams

1946

Valley, NE

Valleyirrigaiton.com

Private

Irrigation Exchange,
weather station,

moisture sensor

Send moisture

reading to PC/phone

Come with the center



developers and
$1,000 for
company +

$0.01/call

Strength Forecasting Weather data

Weakness Lack of platform = Short of

and ground truth  models

data

$700 / sensor
per user
depends on
subscribed

years

Platform,

sensor

Lack of
forecasting
capability,
Costly when

scale up

center pivot

Platform,

Sensor

Lack of
forecasting
capability,
Costly when

scale up
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pivot

Platform,

Sensor

Lack of forecasting
capability, Costly

when scale up

Besides competitors, Ispagtech has indirect competitors some of which are products from the

academic sector and others that can potentially develop similar API services.

Table 4 (continued). Indirect Competitors of Ispagtech.

Smart-

Irrigation apps

DSSAT API

ApSim API

SWATShare

Owner University of Colorado State

Florida University

Many

universities in

Universities

of Australia

USDA and

Texas A&M



Year
founded
Headquart
er

Website

Type of
Entity
Product

Overview

Key

Feature

Pricing

2014

Florida

smartirriga

tionapps.org

Academic

irrigation app

Irrigation
management,

crop stage, GDD

Free

2014

Colorado

crams.com

Academic

Online platform

for irrigation

management

Irrigation

management

Free

the US

2015

N/A

dssat.net

Academic

Initialize, run

and post-process

for DSSAT,

Decision support

system

agrotechnology

transfer model

Includes
irrigation
management
module

Free

2015

N/A

apsim.info

Academic

Development
tool for
APSIM,
Agricultural
Production
Systems

Simulator

Includes
irrigation
management
module

Free
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AgrilLife

Research

2016

N/A

swat.tamu.edu

Academic

An online

collaboration

environment for

sharing data,
models, and
code regards to

hydrology

Includes
irrigation
management
module

Free
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Strength Free Free Free Free Free
Weakness Cannot scale, Cannot scale, Hard to Hard to Only data, no
Subject to Subject to implement, lack = implement, implementation

regions, lack of regions, lack of of maintenance lack of

maintenance maintenance maintenance

Competitive Advantages
Forecasting is not actual, but close enough for many purposes. Ispagtech creates a piece of
mind because it will provide more accurate estimation of what is going to happen in the field,
and forecasting results are going to be better compared with historically averaged results.
Portable to different platforms and services. The API service provided by Ispagtech done to
the core is algorithm consolidation. It is easy to plug in and out to any new Ag ERP platforms. It
is also easy to be used as a foundation for newly development platforms, or as a basic feature of
Platforms as a Service (PaaS) business. It immediately stands out from other products either only
having sensors, or platform, or field data collection. Ispagtech API service actually can be the
glue to connect the three different categorized precision ag businesses together and create more
new business leads. The business model of Ispagtech is to generate revenues and increase
distribution through strategic partners and/or affiliate.
Scalable. Horizontally, Ispagtech API service can provide customized forecasting down to
one-quarter-section field (160 ac or 65 ha) for an end user of a platform. However, it can also be
used by two million acres of field and thousands of users through the platform. Vertically,

Ispagtech API service currently only supports forecasting for corn and soybean primarily.
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However, with the modification, the algorithm can be used for forecasting service for any crop in
different growing seasons. Moreover, it also can be adapted to vegetable and garden lawn which
has entirely different markets. Horizontally, the flexibility of the API allows Ispagtech API
service to be used with much wider geographic areas, compared with the indirect competitors
who have geographical limitation and cannot be scaled even they may have more models
available. Ispagtech API service instantly adapts to a broader market when is implemented to
existing platforms with the user base.

Improvement. By establishing strategic partners and/or affiliates, Ispagtech provides API
service in exchange for access to partners’ user data, for the purpose of improving the accuracy
of forecasting based on machine learning technology. Besides Ag ERP platform, Ispagtech has
the potential to partner with Smart Sensors & Irrigation Platform, and Drone, Imagery &
Platform Service. For Smart Sensors & Irrigation Platform, Ispagtech can be a continuous
projection of the moisture sensor reading to forecast field moisture status. Ispagtech API
algorithm can to modified and read the drone or satellite collected imagery to create more
accurate forecasting results and benefit the imagery business.

Low cost. The API service is very low cost. The value of having in situ sensors is obvious. For
example, a soil water balance may drift over the season compared with historical records, but a
soil water sensor does not have that problem to capture this. A drawback of a soil water sensor is
that multiple locations are needed to get a good average of the soil water level, and many service
providers do not do this. On the other hand, API modeling the soil water balance can be done at a
lower cost. For example, the Climate Corporation product FieldView has 13 million acres’ field
that is paid for premium service in 2016

(http://fortune.com/2016/08/17/monsantos-climate-corp-to-expand-digital-farming-platform/). In
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the US, one producer has on average 1,000 acres’ land (about 10 fields), which is about 13,000
individual paid users. Let us assume if each user calls the API under his/her platform account 1
time per day, the total calls from entire FieldView users will be 130,000 calls per day which
Ispagtech only charges Climate Corporation about $10,000 a year (subject to change). Compared
with Climate Corporation uses the subscription of Cropx soil sensors service, with each quarter
section field installing 3 sensors ($275 / sensor / year), the total cost for FieldView on 13 million
acres’ land will be 4.29 billion per month. Both Ispagtech API service and Cropx soil sensor can
create insight of field soil moisture conditions; Ispagtech only costs 0.000002 % of Cropx’s cost.
If a similar comparison is applied to John Deere Field Connect (soil moisture sensor), the cost of
Ispagtech will be 0.0000003%.

Rare and in demand. There are 78 agricultural API service available on the market (not
including weather API). Only a few are crop health related(http://www.programmableweb.com/
category/all/apis?keyword=agriculture) so far. Once Ispagtech API service turns farm data
collected by Drone, Imagery & Platform Service, Ag ERP platform, and Smart Sensors &
Irrigation Platform, to actionable post-process data, it will create an in-demand effect which
drives startups or individual developers to use Ispagtech API service more to develop age-related

apps and create more business opportunities.

Barriers to entry

- Reliable and cost-effectively weather data source for supporting Ispagtech.

Candidates: iteris, aWhere, ACIS.
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- Gain the trust and establish the first partnership with a company with Ag ERP platform.
Since the forecasting of API service is new and the quality is still under testing, it will
take the time to have a first company to use it.

Solution: preliminary testing by university research has shown the algorithm could
provide highly accurate one some category such as soil water balance forecasting on
common Nebraska soils. More collaboration is needed between Ispagtech and University.

- Strategic partner provides access to their users’ data. Ispagtech API service needs data to
improve its accuracy.

Solution: Ispagtech provides a discount for forecasting service in exchange for data
access. The improvement of forecasting will gain a competitive advantage in the long run

and create a branding effect.

Market Analysis
Addressable Market
Ispagtech’ addressable market focuses on companies with 1) ag decision support platforms which
intend to expand its current portfolio to crop health forecasting; 2) smart sensor and irrigation
control platform which has interests to implement forecasting soil moisture into their platform,
and 3) drone and imagery platform which uses indices such as NDVI to represented plant health,
and 4) the Ag analytics company. There are 12 ag decision support platforms companies, 9
sensor and irrigation platform companies, 10 drone and imagery platform companies, and 2 Ag

analytics company can be Ispagtech potential customers (Table 5).

Table 5. A full list of potential customers of Ispagtech. The tables were created by using



140

DataFox.
Name Location Description
Ag ERP platform
The Climate San Agronomic and weather data at the field level for
Corporation Francisco, decision-making
CA
AGWorld West Farm Data gallery
Leederville,
Australia
Granular San Farm management software and analytics platform
Francisco,
CA
FarmLogs Ann Arbor, Forecast and measure farm profits, track farming expenses,
MI manage risk
OnFarm Fresno, CA Agriculture data from hardware decision-making platform
SST Software Stillwater, Geospatial infrastructure for precision ag products and
OK services
Cropio Amazing field management and vegetation control system
Farmer's Edge Winnipeg, Field-Centric Data Management & Analysis
Canada
Farmer's San Carlos, Agronomic intelligence, market
Business CA
Network
AgriCharts Chicago, IL | Agricultural website hosting, management, consulting and
agribusiness
Crop Tech Gothenburg, | Field data management and decision to quickly know
Solutions NE break-even
FarmLink Kansas City, | Yield potential and management decision
MO
Ag Data analysis & API
aWhere Broomfield, Agriculture analytics, weather, API
CO
Iteris (ClearAg) | Santa Ana, Agriculture analytics, weather, API
CA
Sensor and irrigation platform
John Deere Moline, IL Moisture sensor, cloud
Lindsay Omaha, NE Moisture sensor, cloud
Corporation
Hortau San Luis Improving crop production with precision irrigation
Obispo, CA
HydroBio Denver, CO | Monitor your crop water usage at the sub-acre level and
dynamically building the best irrigation prescription
CropX San Smart moisture sensor with app
Francisco,
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CA
IRROMETER Riverside, Soil tension sensor with cloud
Company, Inc. CA
AgSense Huron, SD Agricultural control and monitoring, allowing growers to
control soil moisture
Valley Irrigation | Omaha, NE Moisture sensor, cloud
CropMetrics North Bend, | precision irrigation management.
NE

Drone & Imagery

PrecisionHawk | Raleigh, NC | Algorithm, remote sensing applications and data processing
services,

Planet Labs, Inc. | San Broad coverage and high-frequency monitoring for Precision
Francisco, Agriculture.
CA

DroneDeploy San To make aerial data accessible to anyone with a drone.
Francisco,
CA

Delair-Tech Toulouse, Drone and platform
France

Slantrange San Diego, Accurate, repeatable crop health measurements with
CA advanced sensors and intelligence tools for agriculture

drones

Orbital Insight, | Red Bank, NJ | Understanding global and national trends through advanced

Inc. image processing and data science at petabyte scale.

Mavrx Francisco, Imagery and data to bring actionable insights to the global
CA agriculture industry

Airphrame San An end-to-end solution for the capture, management, and
Francisco, analysis of spatial data
CA

sentera Minneapolis, | Drone solutions for NDVI, precision agriculture, aerial
MN photography & inspection.

Resson Fredericton, | Bioinformatics and data analytics company, delivering

Aerospace Canada customized agriculture solutions for large corporate clients.

Table 5 (continued). A full list of potential customers of Ispagtech. The tables were created by

using DataFox.
Name Headcount URL Founded PrlvaFe Revenue
Funding
Ag ERP platform
The Climate 370 | climate.com 2006 $108.80m > $100m
Corporation
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AGWorld 180 | www.agworld.co/ 2009 $11.63m > $20m
Granular 60 | granular.ag 2014 $24.90m > $5m
FarmLogs 70 | farmlogs.com 2012 $15.83m > $5m
OnFarm 8 | onfarm.com 2012 $1.23m >$1m
SST Software 180 | sstsoftware.com 1994 > $5m
Cropio 20 | cropio.com/ 2011
Farmer's Edge 180 | farmersedge.ca/ 2005 $103.45m > $20m
Farmer's 60 | Farmersbusin 2014 $47.20m
Business essnetwork.com
Network
AgriCharts 7| www. >$1m
agricharts.com
Crop Tech Croptech
Solutions solutions.com
FarmLink 60 | farmlink.com/ 2000 $64.60m > $2m
Ag Data analysis & API
aWhere 40 | awhere.com 2007 $14.45m > $2m
Iteris (ClearAg) 240 | iteris.com 1969 > $50m
Sensor and irrigation platform
John Deere 57000 | www.deere.com 1837 > $5b
Lindsay 1300 | lindsay.com 1950 > $500m
Corporation
Hortau 180 | hortau.com 2002 $21.50m > $20m
HydroBio 40 | hydrobioars.com/ 2012 $3.10m > $5m
CropX 20 | www.cropx.com/ 2013 $10.00m
IRROMETER 40 | irrometer.com > $2m
Company, Inc.
AgSense 40 | agsense.net 2003 >$1m
Valley Irrigation valleyirrigation.com
CropMetrics 10 | cropmetrics.com/ 2009 $1.35m > $1m
Drone & imagery
PrecisionHawk 100 | precisionhawk.com 2011 $29.00m > $20m
Planet Labs, Inc. 230 | planet.com 2010 $183.10m > $5m
DroneDeploy 50 | dronedeploy.com 2013 $31.00m > $2m
Delair-Tech 40 | www.delair-tech.com/en 2011 $14.50m > $5m
Slantrange 10 | slantrange.com 2013 $8.51m > $2m
Orbital Insight, 30 | orbitalinsight.com/ 2013 $28.70m
Inc.
Mavrx 30 | mavrx.co 2013 $22.50m
Airphrame 20 | airphrame.com 2012 $4.25m
sentera 10 | sentera.com 2014 $9.50m > $2m
Resson Aerospace 30 | ressontech.com/ 2013 $13.70m > $2m
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Third party developers
The number of irrigation apps in the app store has increased from 4 in 2014 to 463 in 2016. The
volume of irrigation apps increases exponentially with a growth rate of 11500% in just two years.
With such demand, the third party developers and startups will be eager to include Ispagtech API
web service in their apps. The biggest two weather companies in the market iteris and aWhere
have open sourced their weather data so the third party developers can create more agricultural
intelligence apps. Meanwhile, public sectors such as ACIS provides integrated weather network
data which is free for public use. The weather data is the fuel of our service, which the increase
of weather data availability, we expected to have more app developers use our Ispagtech API

service for their apps.

Sales and Marketing Plan
Sales and Marketing Goals
Ispagtech will sell API service solely via online channel due to the nature of the product.
Ispagtech will create customized sale pitch for each targeted company and reach out by LinkedIn
and email for presentation opportunities. James Han will represent Ispagtech as a sale
representative / idea promoter of the API service to travel and meet listed companies.
The charts below provide Ispagtech’s marketing goals for online sales based on the following
assumptions:
e FEach year Ispagtech sells the service to at least one company.
e Each year Ispagtech has 50% growth annually on companies and the third party

developers.
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e 100% subscription from companies and 50% subscription from developers remains in the
following year
Ispagtech expects the average annual sale of $16,000 in the first two years with a breakeven of
maintenance of AWS EC2 server and Hadoop and Spark for machine learning and 3scale for API
management. We expect 50% of annual growth on sales with $12,000 at the first year from the
companies’ part. For sales from developers, we expected during first years; it will make a total
sale for $3,180. The sale projection is in Fig. 5. Ispagtech will adjust the price according to the

usage of the API service through 3scale management platform.

Sale projection (S)

70,000
60,000
50,000
40,000
30,000
20,000
10,000 I I
0 J— — —
1 2 3 4 5
mCompany mDeveloper m=Total
Year 1 Year 2 Year 3 Year 4 Year 5
Company $11,940 | $19,880 | $30,500 | $43,000 | $57,500
Developer $60 $120 $500 | $1,000 | $1,500
Total $12,000 $20,000 $31,000 | $44,000 | $59,000

Fig. 5. The sale projection of Ispagtech in first five years.
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SWOT
The following chart shows Ispagtech’s strengths, weaknesses, opportunities and threats for

entering into the business (Fig. 6):

S W

Low cost New to industry

R&D supported Small market size
Portable Capital limitation

Scalable

O

High niche market
Leverage of machine
learning technology

Fig. 6. SWOT matrix of Ispagtech on strengths, weaknesses, opportunities, and threats to get into

the business.

Pricing Strategy
Protect the downside and maximimize the upside. Protect Ispagtech’s downside by charging a
subscription fee for small companies and third party developers. The upside is for when
Ispagtech partners with a company who provides Ispagtech user’s field data, using machine
learning algorithm to provide better-customized forecasting service will strongly boost the API’s

business value. The data access will enable Ispagtech to create additional business insight. Table
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6 is the pricing for Ispagtech API service. Ispagtech offers different premium plans depending on

the number of calls per day.

Table 6. Annual plans of Ispagtech API service.

Entrepreneur Adventurer Expert Enterprise
Price per $10 fee + $60 fee + $180 fee $1,000 fee +
year $0/call $0/call +$0/call $0.01/ call
Calls per 100 1,000 1,500 >1,500

day

There is a base fee for Entrepreneur, Adventurer, Expert packages listed above. For
Enterprise package, the base fee is $1,000 per year. For more than 1,500 calls per days, we will
charge $0.01 per call. For companies providing Ispagtech access of actual ground truth data and
forecasting results of the field, we will provide calibration service for the API and a discount for
the plan subscribed. For companies which have extra needs on historical analytics, we will

provide below price:

Table 7. Historical analytics of Ispagtech API service.

Starter Medium Advanced Expert
Price per $50 fee + $120 fee + $250 fee + $1,000 fee +
year $0/call $0/call $0/call $0.01/ call
Calls per day 100 1,000 1,500 >1,500
Historical 12 months 12 months 24 months 30 months
estimation back back back back

Marketing/Branding Strategy
Ispagtech will heavily depend on social media to create its brand. The strategy of marketing is

based on Gary Vaynerchuk’s book “Jab, Jab, Jab, Right Hook: How to Tell Your Story in a Noisy
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Social World”. Presents values first to users by creating social media contents; have empathy to
users; guilt users to buy your product instead of a sale.

First, by creating Ispagtech’s YouTube channel content on a weekly basis and Snapchat contents
on a daily basis to provide documentation contents of how to develop an API for AgTech
business. Meanwhile, write a blog to explore how the forecasting service can help the end users
reduce crop production risk. Ispagtech will raise awareness of the importance of using
forecasting service to help farmers to save water, energy, and time.

Second, use Facebook ads to drive online traffic to Ispagtech’s Instagram and YouTube channel.
After the potential customers exposing multiple times to the contents which promote AgTech,
Precision Ag, data mining, and machine learning which can create new business opportunities
from Ispagtech’s social media channels, lead potential customers to Ispagtech homepage and ask
them to try it out.

Actively engaging with company’s R&D and management personal by interacting and
retweeting their twitter contents, as well as their end customers (for examples, crop producers) to
understand what they care about. Create 1-on-1 deep engagement experience with the potential
customer (company reprehensive or app developer) by skype calls or meetings until it leads to
partnership or sale. Respect the fact that the branding process will take years and be patient

because the world of mouth in such a small and niche market is critical.

Operation Plan and Timeline
API development: 12/2016 — 5/2017
Django python framework for REST API

TensorFlow for machine learning
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3scale for API management
WordPress for Homepage

Amazon AWS for data storage.

The first year: based on how much call per company has, and adjust the price

Branding: 1/2017 — as long as Ispagtech exists

Facebook Ads, Snapchat, YouTube, Twitter, Instagram, LinkedIn

Establish the first partnership 6/2017 — 12/2017

Customer service

24/7 by James Han

Team management

James Han (Founder, CEO, CTO), PhD in crop modeling,
University of Nebraska - Lincoln. 4 years’ data science,
simulation modeling, and crop production. James’ major

responsibility is to create the vision and direction for the

company, API development, branding, and sale before

1 )/4

hiring the first sale representative.
Busine

https://www.linkedin.com/in/james-han-4b68493a
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Haishun Yang (Advisor, Board of Director), PhD in soil
science, Wageningen University. Associate professor of
University of Nebraska - Lincoln. 27 years’ crop
simulation modeling and crop production experience.
Previously worked as a crop modeling scientist

for Monsanto Co. Haishun is the algorithm creator of the

simulation model CornSoyWater, Hybrid-Maize model,

Maize-N, and creators of simulation model software
SoySim. The algorithm of the simulation models is the intellectual property ispagtech intends to
license. Haishun’s major responsibility is to give advice on modeling algorithm optimization and

company development direction. http://agronomy.unl.edu/yang

Financial Plan
Financial summary
The following indicates the profit and cost, sale projection, profit margins, income
statement, cash flow, and balance sheet in the first five years.
In summary, Ispagtech projects a net loss of $2,000 in the first year and will breakeven
in the second year. Ispagtech projects a net profit of $6,200 in year 2, $11,000 in year 3, $23,000

in year 4, and $33,000 in year 5. In all, a 70% annual growth in net profit after the second year.



70,000
60,000
50,000
40,000
30,000
20,000
10,000

o

-10,000

Profit and cost (S)

2017

B Gross sales

2018

B Total Operating Expenses

2019

2020

2021

B NET INCOME (LOSS)

2,017 2,018 2,019 2,020 | 2,021
Gross sales 12,000 | 20,000 | 31,000 | 44,000 | 59,000
Total Operating
Expenses 14,000 | 13,800 | 20,000 | 21,075 | 26,108
NET INCOME
(LOSS) (2,000) 6,200 11,000 | 22,925 | 32,892

Fig. 1. Profit and cost projection of Ispagtech in the first five years.

150



Sale projection ($)

70,000
60,000
50,000
40,000
30,000
20,000 I I
10,000 I I
1 2 3 4 5
mCompany mDeveloper =Total
Year 1 Year 2 Year 3 Year 4 | Year 5
Company | $11,940 | $19,880 | $30,500 | $43,000 | $57,500
Developer $60 $120 $500 | $1,000 | $1,500
Total $12,000 | $20,000 | $31,000 | $44,000 | $59,000

Fig. 5. The sale projection of Ispagtech in first five years.

Profit Margin (%)
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31%
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Fig. 7. The profit margin projection of Ispagtech in first five years.
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Table 8. The income statement of Ispagtech in the first five years.

268'2¢$ | 526'2$ , 000'TT$ , 002'9$ ,(000°2$) ) (SSO7) INOONI LAN
801°92$ GL0°1e$ 000°0¢$ 008°€1$ 00071$ sasuadx3 bureledo [eloL
0$ 0$ 0% 0$ 0$ 1S8J81U|
05$ 05$ 0$ 0$ 0$ obejsod
0$ 0$ 0$ 005'2$ 005°2$ uoryeoydde ay} ioj uoiiepifen 18} pjal4
0$ 0$ 000°G$ 005°2$ 000°01$ asuadxe 8[es
005$ 005$ 005$ 005$ 005$ 99] Bunnsuon
000°1$ 000°'1$ 000°'1$ 000°'1$ 0$ 80U8dl| NN
0$ 0GE$ 0$ 002$ 0$ lew / paseyaind aseyaind aousdl| 81emyos
0$ 0$ 0% 0$ 0$ 9ouRINSU| Y)esH
850°2$ G/9°I$ 00€‘I$ 0$ 0$ soxe) |0ihed
0$ 0$ 0% 0$ 0$ sjyauaq safojdw
005$ 005$ 002$ 004$ 0$ Janiss pnojy
000°2$ 000'2$ 000'2$ 000'2$ 000°'1$ Buisiuenpy
000°02$ 000°G}$ 000'01$ 0$ 0$ sefem pue saliefes 039

S3SN3dX3 DNILVHIdO
000°6G$ 00073 000°1€$ ,000'02$ ,0002H$ ) So[es 1N
0$ 0$ 0$ 0$ 0$ uoddns Buipun;
000°65$ 000'¥$ 000°1€$ 000°02$ 0002}$ sa[es Ssoin)
le0e 0202 6102 8102 102 aNNIA3Y

1202 Ubnoiy} 2102 104
yoaibeds)



153

Table 9. The cash flow of Ispagtech in the first five years.
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Table 10. The balance sheet of Ispagtech in the first five years.
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Ispagtech

For 2017 through 2021
ASSETS 2017 2018 2019 2020 2021
Current Assets
Cash " $2,500 © $8,700 " $19,700 " $57,424 " $95,490
Total Current Assets $2,500 $8,700 $19,700 $57,424  $95,490
Fixed Assets
Equpment and software $4,000 $3,000 $2,000 $1,000 $0
Total Net Fixed Assets $4,000 $3,000 $2,000 $1,000 $0
TOTAL ASSETS $6,500 $11,700  $21,700  $58,424 $95,490
LIABILITIES
Loan $0 $0 $0 $0 $0
Total Liabilities $0 $0 $0 $0 $0
SHAREHOLDERS' EQUITY
Retained earnings $0" -$2,000°7 $4,200° $15,200" $38,125
Current earnings ($2,000) $6,200 $11,000 $22,925  $32,892
Total Shareholders' Equity $6,500 $11,700 $21,700 $58,424  $95,490
TOTAL LIABILITIES & EQUITY $6,500 $11,700 $21,700 $58,424 $95,490

Exit Strategy

Sell to potential partners, AgTech companies, irrigation companies, and smart agricultural device

companies. Provide UNL free access and use for educational purposes.
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Supplementary

Ispagtech business canvas
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Fig. 8. The business canvas of Ispagtech. The canvas was created by using Strategyzer.



Ispagtech value proposition canvas

The Value Proposition Canvas

Value Proposition
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Fig. 9.

The value proposition canvas of Ispagtech. The canvas was created by using Strategyzer.
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